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ABSTRACT

Recovering a linear combination of exponential signals characterized by parame-

ters is highly significant in many MR imaging applications such as parameter mapping

and spectroscopy. The parameters carry useful clinical information and can act as

biomarkers for various cardiovascular and neurological disorders. However, their ac-

curate estimation requires a large number of high spatial resolution images, resulting

in long scan time. One of the ways to reduce scan time is by acquiring undersampled

measurements. The recovery of images is usually posed as an optimization problem,

which is regularized by functions enforcing sparsity, smoothness or low rank structure.

Recently structured matrix priors have gained prominence in many MRI applications

because of their superior performance over the aforementioned conventional priors.

However, none of them are designed to exploit the smooth exponential structure of

the 3D dataset.

In this thesis, we exploit the exponential structure of the signal at every pixel

location and the spatial smoothness of the parameters to derive a 3D annihilation

relation in the Fourier domain. This relation translates into a product of a Han-

kel/Toeplitz structured matrix, formed from the k − t samples, and a vector of filter

coefficients. We show that this matrix has a low rank structure, which is exploited

to recover the images from undersampled measurements. We demonstrate the pro-

posed method on the problem of MR parameter mapping. We compare the algorithm

with the state-of-the-art methods and observe that the proposed reconstructions and

parameter maps have fewer artifacts and errors.

We extend the structured low rank framework to correct field inhomogeneity ar-

tifacts in MR images. We introduce novel approaches for field map compensation

for data acquired using Cartesian and non-Cartesian trajectories. We adopt the time

segmentation approach and reformulate the artifact correction problem into a re-

covery of time series of images from undersampled measurements. Upon recovery,

v
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the first image of the series will correspond to the distortion-free image. With the

above re-formulation, we can assume that the signal at every pixel follows an expo-

nential signal characterized by field map and the damping constant R∗2. We exploit

the smooth exponential structure of the 3D dataset to derive a low rank structured

matrix prior, similar to the parameter mapping case. We demonstrate the algorithm

on spherical MR phantom and human data and show that the artifacts are greatly

reduced compared to the uncorrected images.

Finally, we develop a structured matrix recovery framework to accelerate cardiac

breath-held MRI. We model the cardiac image data as a 3D piecewise constant func-

tion. We assume that the zeros of a 3D trigonometric polynomial coincides with

the edges of the image data, resulting in a Fourier domain annihilation relation.

This relation can be compactly expressed in terms of a structured low rank matrix.

We exploit this low rank property to recover the cardiac images from undersampled

measurements. We demonstrate the superiority of the proposed technique over con-

ventional sparsity and smoothness based methods. Though the model assumed here

is not exponential, yet the proposed algorithm is closely related to that developed for

parameter mapping.

The direct implementation of the algorithms has a high memory demand and com-

putational complexity due to the formation and storage of a large multi-fold Toeplitz

matrix. Till date, the practical utility of such algorithms on high dimensional datasets

has been limited due to the aforementioned reasons. We address these issues by in-

troducing novel Fourier domain approximations which result in a fast and memory

efficient algorithm for the above-mentioned applications. Such approximations allow

us to work with large datasets efficiently and eliminate the need to store the Toeplitz

matrix. We note that the algorithm developed for exponential recovery is general

enough to be applied to other applications beyond MRI.

vi
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PUBLIC ABSTRACT

In many Magnetic Resonance Imaging (MRI) applications the underlying signal

of interest at every pixel location behaves in a exponential manner. Such a signal is

usually characterized by parameters, which carry important clinical information about

various pathologies, including cardiovascular and brain disorders. Since MRI is a slow

imaging modality it takes a long time to acquire the high resolution images, which

are needed to estimate these parameters accurately. One of the ways to reduce scan

time is to collect only few measurements per image. Using computational approaches,

the remaining samples of each image can be estimated by exploiting the structures

present in the images.

In this thesis, we exploit the exponential behavior of the signal at every pixel

location along with the smoothness of the parameters across the spatial locations to

recover the remaining samples of each image. We demonstrate the proposed idea in

a few MRI applications such as parameter mapping, artifact correction in MRI and

reconstructing cardiac breath-held images from few acquired measurements. We show

that images reconstructed using the proposed idea have fewer artifacts and errors than

those obtained from the competing methods.

The straightforward implementation of the algorithm requires a lot of computer

memory and is computationally expensive. Till date, the practical utility of such

algorithms on large datasets was limited due to the aforementioned reasons. To

address these issues, we introduce novel approximations to the algorithms presented

for each application. These approximations enable us to work with very large data

sets efficiently. We also note that the algorithm developed for exponential signal

recovery is general enough to be applied to other applications in MRI and beyond.
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1

CHAPTER 1
INTRODUCTION

Recovering a linear combination of exponential signals is highly significant in

many Magnetic Resonance (MR) Imaging applications such as MR parameter map-

ping [8, 76], MR spectroscopy [11], fat/water imaging [20] etc. In these applications,

the measured signal, which can be characterized by a few parameters, varies expo-

nentially with time. The main objective in these applications is to recover a series of

images corresponding to the sampled time points of the exponential curve. From the

recovered images, the parameters are estimated by fitting a single or multi-exponential

signal at each pixel location. The estimated spatial map of parameters provide useful

clinical information and act as biomarkers for various pathologies including cardiovas-

cular and neurological disorders [8,11,76]. For instance in MR parameter mapping, the

spatial map of the parameters is dependent on the underlying tissue micro-structure.

They provide valuable information regarding tissue properties and can be used for

early diagnosis of various disorders including neurological, musculoskeletal and car-

diovascular disorders [8, 76]. Similarly in MR spectroscopic imaging a spatial map

of metabolite concentrations is estimated from the series of images. These concen-

trations maps can be used to study the metabolism of different molecules and are

very useful in the investigation of neurological disorders [11]. Hence it is absolutely

necessary to estimate these spatial maps accurately.

Usually a series of high spatial resolution images is required for the accurate es-

timation of these parameters. However the acquisition of these images results in

a long scan time due to the inherently slow nature of the MR imaging modality.

Specifically, the physical constraints on the gradient hardware and the physiologi-

cal constraints such as the risk of peripheral nerve stimulation place a limit on the

achievable speed of acquisition. One of the ways to reduce the acquisition time is

by performing an undersampling operation and acquiring only a fraction of the full
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Fourier space measurements. However the recovery of images from very few measure-

ments is an ill-posed problem; we have to exploit the structure present in the signal

to make the problem well-posed. Some of the common signal structures exploited

are the sparsity in the signal or transform domain (e.g., Wavelet or Fourier domain)

smoothness and low-rankness [7,12,14,24,33,64,77,79–82]. Typically in compressive

sensing algorithms, the recovery is posed as an optimization problem regularized by

functions that enforce the aforementioned signal structures. In this thesis, we derive

a novel Fourier domain structured matrix prior by exploiting the exponential signal

structure along with other structures present in the MR images. We enforce this

prior and solve an optimization problem to recover the time series of images from

undersampled measurements.

1.1 Problem statement

Let the time series of images be represented in Casorati matrix [34] form as ρ =

[ρ1,ρ2, . . .ρT ] ∈ CB×T where the ith column of ρ represents a vector of image data at

time instant ti. We also assume that the temporal profile of ρ at every pixel location

follows an exponential curve. We model this signal as a linear combination of L

exponentials:

ρ[r, n] =
L∑
i=1

αi(r) βi(r)n, (1.1)

where αi(r) ∈ C are the amplitudes, βi(r) ∈ C is the exponential parameter that

is dependent on the underlying physiology, n refers to the signal index along the

parameter dimension and L is the number of exponentials at the voxel.

In this thesis we are interested in recovering the time series of images ρ from the

corresponding Fourier measurements b. The multi-channel Fourier measurements b

corresponding to the image series ρ can be modeled linearly as follows:

b = A(ρ) + η (1.2)
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whereA is a linear acquisition operator. Since (1.2) is an ill-posed problem, we exploit

the exponential signal structure present at every pixel along with the structure present

in the MR images to recover the time series of images.

1.2 Motivation for proposed work: Prony’s method

Recovering parameters of the linear combination of exponential signals is a well

studied problem in signal processing. One of the first persons to study this problem

was Prony, who devised an elegant method to estimate the parameters characterizing

the exponential signals from a few uniformly spaced measurements. Here we briefly

describe Prony’s method [72], which is the main motivation behind the algorithms

developed in this thesis.

Let ρ̂[k] be a 1D signal, which is described using a L exponential signal model.

Given only a few uniformly spaced samples of ρ̂[k], the goal of Prony’s method is to

recover a signal ρ[n], which is made up of a linear combination of L Diracs. The signals

ρ[n] and ρ̂[k] are depicted in Fig. 1.1. The number of unknowns in this problem is

2L and they correspond to the amplitude and location of the Diracs. Hence from a

simple degrees of freedom argument, we can deduce that the number of measurements

needed for the recovery of the parameters is atleast 2L.

We observe that the complex exponential signal ρ̂[k] can be annihilated by a L+1

tap FIR filter [72]:
L∑

m=0

ρ̂[m] ĥ[n−m] = 0 (1.3)

where the above equation represents a 1D convolution relation between the signal

ρ̂[k] and ĥ[k]. Taking inverse Fourier transform on both sides of (1.3), the above

relation translates into a product between a stream of Diracs ρ[n] and a trigonometric

polynomial h[n]; the zeros of a trigonometric polynomial coincides exactly with the

location of the Diracs. The polynomial h[n] is termed as an annihilating polynomial.

Refer to Fig. 1.1 for an illustration of the annihilation relations.
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Figure 1.1: Prony’s method to recover the amplitudes and locations of Diracs repre-
senting ρ[n]: ρ̂[k] is a linear combination of 4 complex exponentials. Given only a few
uniformly spaced samples of ρ̂[k], the goal is to estimate the location and amplitude

of the Diracs representing ρ[n]. The convolution of ρ̂[k] with a five tap filter ĥ[k] is
zero. This relation gives rise to a system of linear equations, which can be solved to
obtain the filter coefficients. The convolution relation translates to a multiplication in
the Fourier domain. We can obtain the location of Diracs from the the zero crossings
of h[n]. Finally, the amplitudes can be obtained by solving another system of linear
equations.

The first step in Prony’s method is to estimate the location of the Diracs using the

uniformly spaced samples. When 2L samples of ρ̂[k] are atleast known at contiguous

locations, we can form a system of linear equations from the relation in (1.3) and solve

for the L+ 1 unknown filter coefficients. Taking the inverse Fourier transform of the

filter coefficients then yields the annihilating polynomial h[n]. The zero crossings

of the polynomial which gives the location of the Diracs can be deduced from the

roots of the polynomial. We can substitute the location of Diracs in the exponential

signal model and estimate the amplitudes by solving another overdetermined system

of equations.
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Figure 1.2: Illustration of the construction of the Toeplitz matrix: The rows of the
Toeplitz matrix correspond to the cuboid shaped neighborhoods of the Fourier sam-
ples. The number of columns is equal to the size of the filter support. Similarly, the
number of rows is equal to the number of valid linear convolutions between ρ̂[r, n]
and the filter.

Similar to Prony’s method, in this work we exploit the linear predictability of

exponential signals to estimate the exponential parameter β and the amplitude α

at every spatial location. In the next section, we give a brief overview about struc-

tured matrix priors, whose low-rankness is exploited to recover the parameters of the

exponential signal from undersampled measurements.

1.3 Structured matrix prior for exponential recovery

In many MRI applications, structured matrix priors are emerging as powerful

alternatives for conventional priors such as sparsity (`1) or smoothness (TV) based

priors. Typically in structured matrix recovery methods, an annihilation relation

similar to (1.3) is derived between a signal and a FIR filter. This relation can be

compactly represented as a product of a Hankel/Toeplitz matrix formed from the

signal samples and a vector of filter coefficients. Such a matrix is shown to have

a low rank structure, which is exploited to recover the signal from undersampled

measurements.

In this thesis, we derive a structured low rank matrix prior by exploiting the
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exponential behavior of the signal at every pixel location along with the smoothness

of the exponential parameter (β(r)). The low rank property is exploited to recover

the exponential image time series ρ from undersampled Fourier measurements. The

proposed work has similarities with structured matrix priors introduced to exploit

various signal properties, including finite support and smoothly varying phase [17],

piecewise smooth continuous domain images [60], and continuous domain wavelet

sparsity [27]. Similar structured low rank priors have also appeared in the recovery

of calibrationless multichannel data [71] and multi-shot diffusion weighted images

[44]. However, none of the above 2-D methods are designed to exploit the smooth

exponential structure of the 3-D dataset.

The exponential parameters usually vary from pixel to pixel and since they depend

on the underlying physiology, it is very unlikely that they will vary in an arbitrary

fashion. Hence we assume them to vary smoothly across the spatial locations. This

fact enables us to jointly exploit the linear predictability of the exponential signals at

all the spatial locations to derive a Fourier domain convolution relation between the

3-D Fourier data corresponding to the image series ρ and a 3D FIR filter d[k, n]:

ρ̂[k, n]⊗ d[k, n] = 0 (1.4)

The above convolution relation can be compactly written as:

T (ρ̂)d = 0 (1.5)

where T is a linear operator that maps a 3-D dataset ρ̂ into a lifted matrix T (ρ̂) ∈

Cm×s. The construction of the matrix is illustrated in Fig. 1.2. Similarly d represents

the vectorized 3-D filter d[k, n]. The number of the columns of the matrix is given

by the product of the dimensions of the filter while the number of rows corresponds

to the number of valid linear convolutions between ρ̂ and the filter. We observe that
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T (ρ̂) has a multi-fold Toeplitz structure since (1.5) corresponds to a 3-D convolution.

From (1.5), we observe that the Toeplitz matrix is rank deficient by one since d is in

its null space. In fact, in the next chapter we show that T (ρ̂) has a much larger null

space and is low rank. We exploit this low rank property to recover the time series

of images ρ by solving optimization problems of the form:

ρ̂? = arg min
ρ̂
‖T (ρ̂)‖p +

µ

2
‖A(ρ̂)− b‖2

2 (1.6)

where µ is a regularization parameter and ‖.‖p is the Schatten p norm. The direct

implementation of the above problem involves the formation and storage of a large

Toeplitz matrix, which increases computational complexity. In this thesis, we propose

novel approximations to solve the above problem efficiently for different applications.

We note that the proposed work shares some similarities with Prony’s method.

Specifically, in both cases the annihilation relations are derived by exploiting the ex-

ponential behavior of the signal. Despite the similarity, we note that Prony’s method

cannot be applied to our setting since the k − t Fourier samples corresponding to ρ

are sampled at non-uniform locations; i.e. the samples are not at contiguous loca-

tions. Also in the proposed work we jointly exploit the exponential structure at all

pixel locations, while Prony’s method works by exploiting the exponential behavior

independently.

1.4 MRI applications

In this thesis, we employ the ideas presented in the previous section to solve

problems arising in various MRI applications. Next, we briefly describe the problems

along with the proposed approaches to solve them.
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Figure 1.3: Accelerated MR parameter mapping: In the illustration, five images
are acquired at different echo times. The temporal profile at each pixel follows an
exponential decay, characterized by the damping constant ( 1

T2
) for that pixel. The

goal is to estimate the T2 value at each pixel location. To reduce the scan time, only
few Fourier samples are acquired per image. After image recovery from these samples,
an exponential is fitted at every pixel to estimate its T2 value.

1.4.1 MR parameter mapping

In MR parameter mapping, the goal is to estimate a spatial map of parameters

from a series of images, which are acquired at different sampled time points of the ex-

ponential curve. As these maps are indicative of the underlying tissue microstructure

or metabolism, they are often used as bio-markers for various pathologies including

neuro-degenerative and cardiovascular disorders. However, to get an accurate esti-

mate of the maps, we need to acquire a large number of high spatial resolution images

which in turn increases the scan time significantly. One of the ways to speed up the

acquisition is by acquiring very few measurements. The recovery of images is then

posed as an optimization problem, which is regularized by sparsity, smoothness or

low rank priors [7, 12, 14, 24, 33, 64, 77, 79–82]. An illustration of the idea behind MR

parameter mapping is shown in Fig. 1.3.
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In this thesis, we derive an annihilation relation in the Fourier domain by ex-

ploiting the exponential structure of the signal at every pixel location along with the

smoothness of the exponential parameters. This relation can be compactly written

in terms of a Toeplitz matrix, formed from the k − t Fourier samples. We show that

this matrix has a low rank structure, which we exploit to recover the time series of

images from undersampled measurements. We employ an iterative re-weighted least

squares based algorithm [47], which alternates between the update of a weight ma-

trix and recovery of images. The straightforward implementation of the algorithm

is computationally expensive due to the formation and storage of the Toeplitz ma-

trix. To alleviate this challenge, we introduce novel Fourier domain approximations

which enable us to solve the problem very efficiently; the approximations eliminate

the need to form and store the Toeplitz matrix resulting in a fast algorithm. We

demonstrate the validity of the algorithm on a multi-channel human data and show

improved reconstructed images and maps over those obtained from state-of-the-art

methods. Part of this work was presented at ISBI 2015 [3] and was extended to result

in a journal manuscript [4].

1.4.2 Field map (B0) compensation

MR images acquired using acquisition trajectories with long read outs are often

susceptible to off-resonance related artifacts, resulting due to inhomogeneities in the

main magnetic field (B0). Here we focus on developing an algorithm for field map

compensation for data acquired using both Cartesian (Echo Planar Imaging) and

non-Cartesian (Rosette) trajectories.

1.4.2.1 Cartesian trajectories: Echo Planar Imaging (EPI)

Echo Planar Imaging (EPI) is a fast MR imaging scheme for acquiring Fourier data

in a single shot. EPI acquisitions are widely used to reduce scan time in applications

including diffusion MRI and parameter mapping [65]. However the long read out
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Figure 1.4: Field inhomogeneity induced artifacts for different trajectories: Images
obtained using Cartesian acquisitions with long read outs have geometric distortion
artifacts as shown above. For the Rosette trajectory, the artifacts manifest themselves
in the form of severe intensity losses. The corrected images are shown for reference.

associated with EPI makes it susceptible to off-resonance related geometric distortion

artifacts, which result from B0 inhomogeneities. This is illustrated in Fig. 1.4. These

inhomogeneities arise due to the susceptibility difference between air, tissue and bone.

Typically in many applications these low resolution EP images, which reflect some

functional detail, are registered with high resolution anatomical images. However,

the distortion artifacts in EPI leads to poor correspondence between the two sets of

images, resulting in poor data interpretation.

In this work, we introduce a novel two-step structured low rank algorithm to

compensate for field inhomogeneity artifacts in EPI. For this purpose we combine

information from two EPI acquisitions and adopt a time segmentation approach [53]

to transform the field map compensation problem to the recovery of an image time
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series from highly undersampled measurements. Upon recovery, the distortion-free

image corresponds to the first image of the series. We assume that the temporal profile

at each pixel follows a single exponential, which is characterized by the field map and

T ∗2 . Using similar ideas as in the case of parameter mapping application, we derive an

annihilation relation between the k−t samples corresponding to the volume and a 3D

FIR filter. This relation can be compactly represented in terms of a Toeplitz matrix,

whose property is exploited to recover the missing entries of the volume. To reduce

the memory demand and computational complexity of the algorithm, we introduce

novel approximations which eliminate the need to store the large Toeplitz matrix. We

demonstrate the algorithm on a numerical brain phantom, MR spherical phantom and

two human datasets and show that the artifacts are significantly reduced compared

to the uncorrected images. This work resulted in a journal manuscript [5].

1.4.2.2 Non-Cartesian trajectories: Rosette

Rosette trajectory was first proposed in [36] and was re-introduced in [52] for

spectrally selective imaging. It has been applied in many applications such as func-

tional MRI (fMRI), spectroscopy and fat/water imaging. The function generating the

trajectory consists of a rapid one dimensional oscillating sinusoid, which is modulated

by a complex exponential. The trajectory goes through the origin and intersects it-

self many times. This results in significant de-phasing throughout the Fourier space,

leading to loss of image intensity. This is illustrated in Fig. 1.4.

To correct the off-resonance related intensity losses, we extend the structured

low rank framework developed for EPI. The reformulation using time segmentation

approach generates a volume with lot of missing entries. In contrast to the EPI

setting, here the undersampling pattern in each frame of the time series is highly

incoherent with respect to the other frames. This favours a compressed sensing based

algorithm to be employed for the recovery of images. Hence we adopt an IRLS

based algorithm, similar to the one for MR parameter mapping. We designed the
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rosette trajectory and acquired MR phantom datasets in the 3T MR scanner. We

demonstrated the algorithm on these datasets and showed that the intensity losses

were significantly reduced.

1.4.3 Dynamic MRI reconstruction

Dynamic MRI is a very useful imaging modality to study the structure and func-

tion of different organs such as heart, lungs, abdomen etc. However, there are in-

convenient trade offs in Dynamic MRI, especially in achieving high spatio-temporal

resolution and good slice coverage simultaneously due to the slow nature of the acqui-

sition process. In particular, cardiac MRI is especially challenging due to the presence

of both cardiac and respiratory motion. One of the ways to alleviate the challenges is

to perform the imaging in the breath-held mode. However many critically ill patients

find it difficult to sustain long breath-holds. To address this challenge, we focus on

shortening the required breath-hold duration by acquiring fewer samples. We can

then pose the recovery of the images from their undersampled measurements as an

regularized optimization problem.

Here, we propose to develop an algorithm to recover the dynamic image series

by modeling it as a piece-wise constant function in three dimensions. We assume

that the partial derivatives or edge sets of the images coincide with the zero crossings

of a band-limited trigonometric polynomial. This implies that the signal can be

annihilated by a set of finite impulse response filters in the Fourier domain. The

annihilation relations result in a structured matrix formed from the weighted Fourier

coefficients. Such a matrix will have a Toeplitz/Hankel structure and will be low rank.

We propose to enforce this low rank prior to fill in the missing Fourier entries. We

introduce novel Fourier domain approximations which result in a fast and memory

efficient algorithm.

Note that in contrast to the previous applications, here we employ a piece-wise

constant model and derive the appropriate annihilation relations. Yet, we present it
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as part of this thesis since the algorithm proposed here closely resembles the algorithm

for the parameter mapping application.

1.5 Contributions

1. Exponential recovery using structured low rank matrix priors We de-

rive a structured low rank matrix prior by exploiting the exponential behavior

at every pixel location along with the smoothness of the parameters. Even

though structured matrix priors are being employed in many MRI applications,

none of them exploit the smooth exponential structure of the 3D dataset. In

this work, we exploit the low rank property of the matrix and recover the ex-

ponential image time series from undersampled measurements. We introduce

novel Fourier domain approximations which results in a fast and memory ef-

ficient algorithm. Though the algorithm is demonstrated for MR parameter

mapping application, it is general enough to be applied to other applications.

The forward model, which reflects how the measurements are acquired needs to

be modified accordingly.

2. Accelerated MR parameter mapping The algorithm developed for expo-

nential signal recovery was demonstrated in the context of MR parameter map-

ping. Specifically, we solved the optimization problem to recover the time series

of images from highly undersampled Fourier measurements. Once the images

were estimated, we fitted a mono-exponential signal model at every pixel lo-

cation to obtain a spatial map of the relaxation constant T2. We compared

the proposed reconstructions and maps to those obtained from state-of-the-art

methods and showed significant improvements. The competing methods exploit

different structures present in the images and enforce priors such as sparsity, low

rankness and linear predictability of exponential signal. The structured matrix

prior proposed in this work can be thought to qualitatively combine all of the
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above-mentioned priors into a single prior.

3. Calibration-less field (B0) map compensation

We propose a two-step structured low rank method to compensate for B0 in-

homogeneities in EPI data. Even though structured low rank methods have

been developed for many applications, none of them are applicable for field

inhomogeneity compensation in EPI. We reformulate the field inhomogeneity

correction of the 2-D EP image as the recovery of a 3D (2D + time) dataset

from highly undersampled measurements. This reformulation allows us to use

a structured low rank prior, which is designed to exploit the exponential struc-

ture present in the 3-D dataset, to recover it. To the best of our knowledge,

this approach has not been adopted before for field inhomogeneity compensa-

tion in EPI. We introduce fast alternatives to current two-step nullspace based

approaches [60], [17], [58] to significantly reduce the computational complexity

and memory demand of the algorithm. We demonstrate the algorithm on phan-

tom and human datasets and show that the artifacts are significantly reduced

compared to the single shot uncorrected images.

We extend the structured low rank framework for EPI data to the data ac-

quired using rosette trajectory. The reformulation results in a volume with

very few measurements in each frame; the sampling pattern corresponding to

these frames are incoherent with respect to each other. This enables us to use

an iterative compressed sensing algorithm to recover the missing entries. This

approach has never been employed in the context of field map compensation

for rosette data. We also designed the rosette trajectory using the GE’s Multi-

Nuclear Spin (MNS) package and used it to acquire data. We demonstrate the

algorithm on MR phantom datasets and show that the proposed reconstructions

have fewer artifacts.
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4. Accelerated cardiac MRI

Many compressed sensing schemes employ sparsity and smoothness priors to

regularize the image recovery problem. However these schemes are not able

to use other structural information such as smoothness present in the edges

etc, which could improve the recovery at higher accelerations. In many 2D

MRI applications, structured matrix priors based algorithms are shown to per-

form better than conventional sparsity and smoothness priors based algorithms.

However extension of these algorithms to multidimensional imaging applications

is very difficult due to the huge memory demand and high computational com-

plexity. In this work, we introduce a structured matrix prior for accelerating

cardiac MRI. We develop a fast and memory efficient algorithm that addresses

the aforementioned issues on memory and speed and enables us to work with

these very large structured matrices. Specifically, we introduce novel approxi-

mations which enables us to use these powerful matrix priors in the recovery of

cardiac MRI data from under-sampled Fourier measurements. We demonstrate

the algorithm on a cardiac breath-held data and show improved reconstructions

over sparsity and smoothness based methods.

1.6 Organization

Chapter 2 introduces a structured low rank matrix based algorithm for the re-

covery of MR parameter maps from under-sampled Fourier measurements. This is

demonstrated on human brain data. In chapter 3, we develop a framework to solve

the problem of field inhomogeneity compensation for EPI acquisitions. The devel-

oped scheme is demonstrated on both phantom and human data. We extend this

technique to non-Cartesian rosette trajectories in chapter 4. We designed a trajec-

tory to acquire phantom data, and used it to demonstrate our algorithm. In chapter

5, we develop a scheme for accelerating breath-held dynamic cardiac MR imaging,

using similar structured low rank based ideas. The algorithm is demonstrated on
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human data and compared to other traditional compressed sensing based techniques.

Finally, we summarize our work and present possible future extensions in chapter 6.
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CHAPTER 2
ACCELERATED MR PARAMETER MAPPING

2.1 Introduction

Recovering parameters of a linear combination of damped exponentials is a prob-

lem of high significance in many MR imaging applications, including MR parameter

mapping [8,76], MR spectroscopy [11], and fat/water imaging [20]. The objective is to

estimate from a series of MR images the spatial maps of the exponential parameters,

which are indicative of the underlying tissue microstructure or metabolism. These

maps are often used as bio-markers for pathologies including neuro-degenerative and

cardiovascular disorders [8, 11, 76]. Current approaches involve acquiring multiple

images by sampling the exponential signals at different points, followed by a pixel-

by-pixel fitting of the exponential model to estimate the parameters. However, the

main challenge with these schemes is the long acquisition time, resulting from the

need to acquire a large number of high spatial resolution images. Recently, several

researchers have considered compressive sensing methods for recovering images from

under-sampled Fourier measurements using priors which enforce sparsity, smoothness

and low-rankness [7, 12,14,24,33,64,77,79–82].

The recovery of exponential parameters from few uniform samples of a linear

combination of exponentials is a classical and well researched problem in signal pro-

cessing [72]. The model has been extended to include a large class of signals with

finite rate of innovation or finite number of discontinuities in [35,78]. The early work

in this direction focussed on the uniform sampling setting, where the linear dependen-

cies between the samples of the signal translated to an “annihilation relationship”.

This implies that the signal can be nulled by the convolution with a finite impulse

response filter. Recently, several researchers have extended the framework to recover

a linear combination of undamped sinusoids from a few non-uniform Fourier sam-

ples [9, 17, 60]. These methods compactly represent the annihilation relation as a



www.manaraa.com

18

product of a Hankel matrix formed from the signal samples and a vector of annihila-

tion filter coefficients. With this reformulation, the Hankel matrix can be shown to

be low-rank; the low-rank property can be enforced to complete the matrix from its

non-uniform measurements.

In this work, we introduce a structured matrix completion algorithm for recovering

a series of MR images from their non-uniformly under-sampled Fourier measurements,

where the signal along the parameter dimension at every pixel is described by a

linear combination of damped exponentials. We also assume that the exponential

parameters vary smoothly in space. We observe that this model is general enough

to account for many applications, including MR spectroscopy, parameter mapping,

and diffusion MRI. For example, in MR parameter mapping, the signal along the

parameter dimension could vary as a function of echo time, repetition time, and/or

spin-lock duration. Here, we consider the single parameter setting for simplicity. We

exploit the exponential behavior at every pixel, along with the smoothness of the

parameters in the spatial dimensions, to derive an annihilation relation in the k − t

domain; t denotes the parameter dimension. These 3-D convolution relations can

be compactly represented using a multi-fold Toeplitz matrix formed from the k − t

samples. We show that this matrix has a large null space, and hence is low rank. We

enforce the low rank property of the structured matrix as a prior to recover the missing

entries from the under-sampled Fourier measurements. The spatial smoothness as

well as the number of exponentials in the model can be controlled by the rank of the

Toeplitz matrix, which is in-turn dependent on the regularization parameter.

The straightforward implementation of the above structured Toeplitz matrix re-

covery scheme is associated with huge memory demand and high algorithmic complex-

ity. Specifically, the size of the Toeplitz matrix is often several orders of magnitude

greater than the size of the multidimensional signal. We introduce an algorithm

based on a half-circulant approximation of the Toeplitz matrix, which eliminates the
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need for the explicit evaluation and storage of the structured matrix. This work is

a generalization of our recent work [61], where we introduced the GIRAF (General-

ized Iterative Reweighted Annihilating Filter) algorithm for recovering the missing

entries of a Toeplitz/Hankel matrix, when only few of its entries are observed. The

approximation of linear convolutions by circular convolutions enabled an efficient im-

plementation of the algorithm using Fast Fourier transforms (FFTs). The circulant

approximation in [61] is valid when the signal samples decay rapidly towards the

boundaries. This scheme is not directly applicable in our setting, since the signal

samples have significant magnitude at the first few points along the parameter di-

mension. We modify the GIRAF algorithm and adopt a hybrid approach to solve

the problem. Specifically, we perform the 3-D linear convolution as a series of 2-D

circular convolutions along the spatial dimensions and linear convolution along the

parameter dimension. Such a modification allows us to apply our algorithm on large

scale multi-dimensional exponential estimation problems. The preliminary version

of this work is accepted as a conference paper [3]. Compared to the work [3], the

theoretical and algorithmic frameworks are further developed here, in addition to the

application of the problem to the recovery of single and multi-channel T2 weighted

images.

The proposed method has similarities with structured matrix priors introduced

to exploit various signal properties, including finite support and smoothly varying

phase [17], piece-wise smooth continuous domain images [60], and continuous domain

wavelet sparsity [27]. Similar structured low rank priors have also appeared in the

recovery of calibrationless multichannel data [71] and multi-shot diffusion weighted

images [44]. However, none of the above 2-D methods are designed to exploit the

smooth exponential structure of the 3-D dataset. In [31], a Hankel matrix is con-

structed by exploiting the temporal smoothness using a Fourier transform and the

spatial redundancies are exploited using a wavelet transform; the exponential struc-



www.manaraa.com

20

ture of the temporal signal is not taken into account. In addition, the recovery of

each ky − t slice is performed independently, assuming Cartesian sampling. The ex-

ponential structure of the signal is exploited in [63] and [49], where a Hankel matrix

is constructed at every pixel by exploiting the linear predictability of the exponential

time series. Since the linear combination of pixel-wise structured low rank priors is

not capable of exploiting the similarities between the pixels in the dataset, the authors

additionally use low rank and joint sparsity penalties on the Casorati matrix; see sec-

tion II.D for more details. The proposed formulation enables the joint exploitation of

the spatial correlations as well as the exponential structure, thereby mitigating the

need for additional spatial priors; this approach is computationally more efficient and

requires fewer free regularization parameters.

2.1.1 Notation

We collect the different notations used through out this chapter and describe them

in this section for easy reference. Unless otherwise mentioned, bold upper-case letters

X and bold lower-case letters y are used to represent matrices and vectors respec-

tively; [y]T , [X]T represent a transpose of the vector y and matrix X respectively. We

denote a function that is dependent on r and n by x[r, n]. The collection of function

values for all possible values of r and n are denoted by the vector x. The discrete

Fourier transform of x is denoted by x̂, while the vector corresponding to the function

values is denoted by x̂. We use non-bold lower-case greek alphabets such as µ, α to

represent constants. Upper-case greek alphabets Λ,Θ represent index sets containing

the support of the coefficients of the filter and Fourier data; |Λ| is used to denote the

size of the set Λ. We denote the 2D and 3D convolution by ∗ and ⊗ respectively.

The calligraphic letters (e.g. A, T ) denote operators. For example, A is the forward

operator that models the image acquisition as in (2.2), while T is a lifting operator

that constructs a multi-fold Toeplitz structured matrix T (ρ̂) from the entries of ρ̂.
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(a) Construction of the Toeplitz matrix T (ρ̂) of
dimension |∆| × |Λ|.

(b) Illustration of the in-
dex sets for the construc-
tion of Toeplitz matrix.

(c) Illustration
of the index sets
for the minimal
and assumed fil-
ters.

Figure 2.1: (a) Illustration of the construction of the matrix T (ρ̂) from the dataset ρ̂:
The rows of the Toeplitz matrix correspond to the cuboid shaped neighborhoods of
the Fourier samples. The number of columns is equal to the size of the filter support
(|Λ|). Similarly, the number of rows is equal to the number of valid linear convolutions
between ρ̂ and the filter, denoted by ∆. b) Illustration of the relation between the
filter and signal supports and the matrix dimensions: The Fourier samples ρ̂[k, n] and
the filter coefficients d[k, n] are assumed to be supported on the rectangular sets Γ and
Λ, respectively. The 3-D convolution between them is valid in the dotted rectangular
region (in green) and the set of valid indices is represented by ∆ = Γ : Λ. c) The
rectangular sets containing the coefficients of the minimal and assumed filters are
represented by Θ and Λ respectively. The number of linearly independent null space
vectors of T (ρ̂) is given by all possible valid shifts of Θ in Λ, denoted by Λ : Θ; this
implies that T (ρ̂) is low rank and we enforce this property to estimate the missing
entries of the matrix.

2.2 Recovery using annihilation relations

2.2.1 Measurement model

We consider the recovery of a series of images ρ from its multichannel Fourier

measurements b. The multichannel Fourier data ρ̂i corresponding to the ith image

frame can be modeled as

bij = SiFCjF
∗︸ ︷︷ ︸

Aij

ρ̂i + ηij, j = 1 . . . Ncoils (2.1)



www.manaraa.com

22

where bij and ηij are the under-sampled Fourier measurements and zero mean white

gaussian noise corresponding to the ith frame and jth coil respectively, Cj is the

receiver coil sensitivity of the jth coil, Si is the sampling mask for the ith frame and F

is the 2D discrete Fourier transform (DFT) matrix. (2.1) can be compactly written

as

b = A(ρ̂) + η (2.2)

where ρ̂ = [ρ̂1, ρ̂2, . . . ρ̂T ] ∈ CB×T is the Fourier data in Casorati matrix form [34]

with the ith column representing the vector of Fourier data at time instant ti. A

is a linear operator representing Fourier under-sampling and multiplication of coil

sensitivities with ρ̂.

2.2.2 Annihilation property of smooth exponentials

We model the signal at the spatial location r = (x, y) as a linear combination of

L exponentials:

ρ[r, n] =
L∑
i=1

αi(r) βi(r)n, (2.3)

where αi(r) ∈ C are the amplitudes, βi(r) ∈ C is the exponential parameter that

is dependent on the underlying physiology, n refers to the signal index along the

parameter dimension and L is the number of exponentials at the voxel. For instance,

in T2 mapping applications the exponential parameters at the pixel location indexed

by r are given by βi(r) = exp
(
−∆T
T2,i(r)

)
. Here ∆T is the difference in echo times

between two frames and T2,i is the relaxation parameter of the ith tissue component

(e.g. gray matter, CSF or white matter).

The exponential signal, described in (5.1), at each pixel location can be annihilated

by a 1-D FIR filter g[r, n] [72]:

L∑
m=0

ρ[r,m] g[r, n−m] = 0, ∀r. (2.4)
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where (3.4) represents a 1-D convolution between the signal ρ[r, n] and the L + 1

tap filter g[r, n]. Since the exponential parameters vary from pixel to pixel, the filter

g[r, n] also varies with the spatial location r.

In practice, the exponential parameters vary smoothly as a function of space. This

implies that the coefficients of the filter g[r, n] can be assumed to be smooth functions

of the spatial variable r. Taking the 2-D Fourier transform of (3.4) along the spatial

dimensions, we obtain the following annihilation relation in the Fourier domain:

ρ̂[k, n]⊗ d[k, n] = 0. (2.5)

where ρ̂[k, n]
F2D↔ ρ[r, n] and d[k, n]

F2D↔ g[r, n] are the spatial Fourier coefficients of

ρ[r, n] and g[r, n], respectively. Here, ⊗ denotes 3-D convolution.

Since the filter coefficients of g[r, n] vary smoothly as a function of space, we

assume d[k, n] to be a 3-D FIR filter, whose coefficients are support limited in the

rectangular set Λ ⊂ Z3; the size of Λ (spatial bandwidth of d[k, n]) controls the spatial

smoothness of the parameters, while the bandwidth along the parameter dimension

is dependent on the number of exponentials in the signal model.

We focus on the recovery of the Fourier coefficients of the signal specified by ρ̂

within the rectangular set Γ ⊂ Z3. For simplicity, we assume ρ̂ has T frames, each

of dimension P × Q. The set Γ is illustrated by the red cuboid in Fig. 2.1.(b). The

3-D convolution (2.5) can be compactly written as

T (ρ̂) d = 0 (2.6)

where T is a linear operator that maps a 3-D dataset ρ̂ into a lifted matrix T (ρ̂) ∈

Cm×s. The construction of the matrix is illustrated in Fig. 2.1.(a). Similarly d

represents the vectorized 3-D filter d[k, n]. Here, s = |Λ| is the number of the columns

of the matrix, where Λ denotes the support of the filter d indicated by the blue cuboid
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in Fig. 2.1.(b). The number of rows in the matrix is denoted by m = |Γ : Λ|, which

corresponds to the number of valid linear convolutions between ρ̂ and the filter; the

convolutions are valid in the green dotted cuboid in Fig. 2.1.(b). The set Γ : Λ is

specified by

Γ : Λ = {v | Λ + v ⊆ Γ; v ∈ Z3}. (2.7)

The blue dotted cuboid in Fig. 2.1.(b) indicates a valid shift of the blue solid cuboid,

whose support is given by Λ. We observe that T (ρ̂) has a multi-fold Toeplitz structure

since the matrix-vector product in (2.6) corresponds to a 3-D convolution.

2.2.3 Dimensions of the fundamental subspaces of T (ρ̂)

We denote the index set of the filter with the smallest support (termed as the

minimal filter), which satisfies the annihilation relation, to be Θ. In practice, the

support Θ (denoted by the purple cuboid in Fig. 2.1.(c) is unknown. In such cases,

the support set of the filter is overestimated to Λ, such that Θ ⊂ Λ. Let the dimensions

of Λ be N1 ×N2 ×M .

When the size of the filter is overestimated to Λ, it will result in multiple linearly

independent vectors d in the null space of T (ρ̂). Specifically, if c[k, n] is the minimal

filter, then any FIR filter of the form

d[k, n] = c[k, n]⊗ e[k, n] (2.8)

will also satisfy the following annihilation relation ρ̂[k, n]⊗d[k, n] = 0, or equivalently

T (ρ̂)d = 0. Here, e[k, n] is any FIR filter such that d[k, n] is support limited to Λ.

The number of such filters (d[k, n]) is specified by the set of all valid shifts of Θ in Λ,

denoted by Λ : Θ [60]; this set is indicated by the orange cuboid in Fig. 2.1.(c). The

corresponding shifted filters are linearly independent [60].

The above discussion shows that the dimension of the kernel of T (ρ̂) is at least
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|Λ : Θ|. i.e.,

dim
(

ker (T (ρ̂))
)
≥ |Λ : Θ| (2.9)

where Λ is the assumed filter size and |Λ : Θ| denotes the cardinality of the set Λ : Θ.

By the rank-nullity theorem, the rank of T (ρ̂) or the dimension of the image space

of T (ρ̂) is specified by

rank
(
T (ρ̂)

)
= dim

(
im (T (ρ̂))

)
≤ |Λ| − |Λ : Θ|. (2.10)

Consider two datasets ρ̂1 and ρ̂2, where the size of Θ (purple cuboid in Fig. 2.1.(c))

is smaller for ρ̂2. Note that a smaller minimal filter corresponds to a dataset with fewer

exponentials and smoother parameters. Since the number of valid shifts indicated by

the set |Λ : Θ| is higher for the dataset ρ̂2, we have rank(T (ρ̂2)) < rank(T (ρ̂1)).

Hence, the rank of the Toeplitz matrix can be used as a measure of complexity of the

dataset.

Since we expect the matrix T (ρ̂) to be low rank, we use the rank prior as well

as the Toeplitz structure of the matrix to recover the exponential image series from

under-sampled Fourier measurements. The support of the different index sets along

with the construction of the Toeplitz matrix is illustrated in Fig. 2.1.

2.2.4 Structured low rank recovery from few measurements

Since (2.2) is an ill-posed problem, we employ the structured low rank matrix prior

proposed in the previous sub-sections for the recovery of missing Fourier samples. We

formulate the recovery of the Fourier data ρ̂ from the under-sampled measurements

b as the following structured matrix completion problem:

min
ρ̂

rank [T (ρ̂)] such that b = A(ρ̂) + η (2.11)
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Since the problem specified in (2.11) is NP hard, we relax the rank function with a

Schatten p (0 ≤ p ≤ 1) norm. The relaxed objective function is then given by

ρ̂? = arg min
ρ̂
‖T (ρ̂)‖p +

µ

2
‖A(ρ̂)− b‖2

2 (2.12)

where µ is a regularization parameter that balances the weight given to the Schatten

norm of the matrix and the data consistency term in (2.12). T (ρ̂) ∈ Cm×s is a

multifold Toeplitz matrix formed from the Fourier samples ρ̂. ‖X‖p is the Schatten

p norm, defined as ‖X‖p := 1
p
Tr[(XHX)

p
2 ] = 1

p
Tr[(XXH)

p
2 ] = 1

p

∑
i σ

p
i ; σi are the

singular values of X. When p = 1, the Schatten norm reduces to the convex nuclear

norm and for (0 ≤ p < 1), the Schatten norm is a non-convex penalty; When p →

0, ‖X‖p :=
∑

i log σi. In section 2.3, we will focus on the algorithm to solve the

optimization problem (2.12).

2.2.5 Relation to pixel-wise structured low rank priors

The recovery of MR parameter weighted images considered in [63] is closely related

to the proposed work. In [63], the sum of structured low rank priors, formed at every

pixel, is considered. Specifically, for every pixel, a Hankel matrix is constructed using

the temporal signal at that pixel. The images are reconstructed by exploiting the low

rank structure of all these matrices. The objective function is specified by

{ρ̄m} = arg min
ρ̄

l∑
i=1

rank[T (ρ̄(ri))], such that A(ρ̄) = b (2.13)

where ρ̄m is the set of images to be recovered, l is the total number of pixels, A is a

linear operator and b is a vector of measurements.

We now consider a special case of our setting, where the spatial dimensions of Λ

(assumed filter size) are the same as that of the dataset (i.e. P = N1 and Q = N2),

which is related to the above model. Since the spatial dimensions of the filter are
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the same as the dataset, no spatial smoothness is assumed on the annihilation filter

coefficients. In this case, the dimension of the Toeplitz matrix T (ρ), where ρ is a

signal of interest, is specified by (T −M + 1) × (N1 · N2 ·M). The Toeplitz matrix

after a re-arrangement of the columns has the following structure:

T (ρ) =
(
T (ρ

(
r

1
)
)
T
(
ρ(r2)

)
. . . T

(
ρ(rl)

) )
(2.14)

In (2.14), each of the Toeplitz matrices T (ρ(ri)) ∈ C(T−M+1)×M , whose entries cor-

respond to the temporal signal at location ri. We observe that enforcing a low rank

prior on the special case considered in (2.14) results in a more constrained approach

than the pixel-wise low rank penalty in (2.13). In particular, the global low-rank prior

considered in (2.14) enables the exploitation of correlations between the columns of

T (ρ), in addition to the annihilation relations. In contrast, the pixel-wise approach

in (2.13) is not capable of exploiting these correlations. An additional low-rank prior

on the Casorati matrix of the images or a wavelet prior has to be used as in [63] to ex-

ploit these correlations. Since the special case of our formulation is already capable of

exploiting these correlations, we do not require additional priors. More importantly,

we consider spatially bandlimited filters, which account for the smoothness of the

exponential parameters. We observe that this property offers a 3 dB improvement

(see Table 2.1) over the special case considered in (2.14). In summary, the struc-

tured low-rank prior considered in this work qualitatively consolidates and unifies the

multiple diverse priors used in [63].

Another key benefit of the above special case is the reduced computational com-

plexity. When an iterative re-weighted least squares (IRLS) based approach [47]

is employed, each step of the algorithm (2.13) requires the eigen decomposition of

as many Gram matrices as pixels in the dataset. In contrast, the use of the prior

(2.14) requires the eigen decomposition of only one Gram matrix at each iteration.
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As the dimension of the Gram matrices in both the cases is the same and equal to

(T −M +1)× (T −M +1), the computational complexity of the special case is orders

of magnitude lower than that of the pixel-wise structured low rank strategy.

2.3 Optimization algorithm

The minimization of (2.12) using classical low-rank matrix recovery schemes is

challenging due to the large size of the structured matrix, which often requires sev-

eral orders of magnitude more memory, when compared to the original 3-D dataset.

Current structured low-rank methods [17, 27] employ approaches originally designed

for low-rank matrix recovery and do not exploit the structure of the matrix; the direct

use of these 2-D algorithms to our 3-D setting is difficult due to the large memory

demand and computational complexity.

We modify the GIRAF algorithm [61] to the 3-D setting to minimize the compu-

tational complexity. Specifically, we employ an IRLS based algorithm [47] to solve the

optimization problem in (2.12). This approach allows us to use efficient approxima-

tions for operations involving the Toeplitz matrix using fast Fourier transforms; these

modifications quite significantly reduce the computational complexity and memory

demand. To derive the basic idea of the algorithm, we use the following identity to

express the Schatten p norm of a matrix as a weighted Frobenius norm:

‖Y‖p =
1

p
Tr[(YY∗)

p
2
−1︸ ︷︷ ︸

H

YY∗] (2.15)

=
1

p
‖H

1
2 Y‖2

F (2.16)

Hence the solution to the minimum Schatten norm can be obtained by alternating

between the update of a weight matrix H and the solution to a weighted least squares

problem. In our case, we set Y = T (ρ̂) in (2.15), which decouples (2.12) into two
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sub-problems. At the nth iteration, the sub-problems are given by

ρ̂(n) = arg min
ρ̂
‖(
√

H)(n−1) T (ρ̂)‖2
F +

µp

2
‖A(ρ̂)− b‖2

2

(2.17)

H(n) = [T (ρ̂(n)) T (ρ̂(n))∗︸ ︷︷ ︸
R

+ε(n) I]
p
2
−1 (2.18)

where ε(n) → 0 is added to stabilize the inverse. Hence to solve (2.12), we employ

an alternating minimization scheme that cycles between the sub-problems (2.17) and

(2.18) till the cost of (2.12) between successive iterates is below a tolerance threshold.

In the next two sub-sections, we describe an efficient implementation of the two sub-

problems.

2.3.1 Least squares solution

Let the rows of
√

H be denoted by
[
(h(1))T , . . . , (h(M))T

]T
. Substituting for

√
H

in (2.17), we obtain

ρ̂∗ = arg min
ρ̂

M∑
i=1

‖h(i) T (ρ̂)‖2
2 +

µp

2
‖A(ρ̂)− b‖2

2 (2.19)

The term h(i) T (ρ̂) in (2.19) represents a 3-D linear convolution between the 3-D

sequences h(i) and ρ̂.

In the GIRAF algorithm [61], the linear convolutions were approximated by cir-

cular convolutions, so that they could be efficiently implemented using Fast Fourier

transforms (FFTs). The approximations were valid due to the rapid decay of the

Fourier coefficients towards the boundaries. However, in our case as the signal at

every voxel follows an exponential curve, the magnitude of the Fourier coefficients

are high at the first few points along the parameter dimension. Hence, the direct

application of the GIRAF scheme to our setting gives poor results.

We introduce a hybrid strategy to improve the approximations, while keeping the
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memory demand and computational complexity low. In particular, we approximate

the 3-D linear convolution as a series of 2-D circular convolutions along the spatial

dimensions and a linear convolution along the parameter dimension. Denoting the lth

frame of ρ̂ and h as ρ̂l [k] and hl [k] respectively, we rewrite the convolution relation

as

h[k, n]⊗ ρ̂[k, n] =
∑
m

∑
p

ρ̂ [k− p, n−m]h[p,m]

=
∑
m

∑
p

ρ̂n−m [k− p]hm[p]︸ ︷︷ ︸
gn−m,m=ρ̂n−m ∗ hm

, (2.20)

where ⊗ denotes 3-D convolution and ∗ denotes 2-D convolution. Since the spa-

tial Fourier coefficients of ρ̂ [k] decay rapidly towards the boundaries, the 2-D linear

convolutions gj,l = ρ̂j ∗ hl can be approximated as 2-D circular convolutions and

efficiently computed using fast Fourier transforms as shown in [61]. After the 2-D

convolutions are evaluated for all feasible combinations gj,l, we compute the outer

sum.

Now, we express the aforementioned idea in compact matrix notations. Let h and

ρ̂ consist of M and T frames respectively. We consider an arbitrary filter h of spatial

dimensions N1 ×N2 and denote its ith frame by hi. Now (h T (ρ̂)) can be expanded

as,

h T (ρ̂) =

(
hM . . . h1

)
T(ρ̂1) .. T(ρ̂T−M+1)

...
...

...

T(ρ̂M) .. T(ρ̂T )

 (2.21)

In the above equation, T(ρ̂j) represents a Toeplitz matrix formed from the samples

of ρ̂j. This matrix can be expressed in terms of a larger circulant matrix [61] in the

following way:

T(ρ̂j) ≈ P∗Λs
C(ρ̂j) (2.22)
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Here C(ρ̂j) ∈ CL×L is a circulant matrix formed from the Fourier samples ρ̂j, Λs is

the support of a frame of the filter and P∗Λs
∈ CN1N2×L corresponds to zero padding

operation outside the filter support Λs. Note that the support of hl is often much

smaller than that of ρ̂j.

Using the approximation in (2.22), we can efficiently evaluate hl T(ρ̂j), which is

the 2-D linear convolution between the lth frame of h and jth frame of ρ̂, as

hl T(ρ̂j) ≈ hl P∗Λs
C(ρ̂j)

=
[
ρ̂j
]T

C(hl P∗Λs
)︸ ︷︷ ︸

Cl

. (2.23)

where we have used the commutative property of convolution to arrive at the ex-

pression in (2.23). Here, Cl = C(hlP
∗
Λs

) is a circulant matrix formed from the zero

padded filter coefficients hl. Hence, the product
[
ρ̂j
]T

Cl denotes the 2-D circular

convolution between
[
ρ̂j
]T

and the zero-padded filter coefficients.

We propose to implement the circular convolutions using fast Fourier transforms

to minimize the computational complexity. Specifically, we compute (2.23) efficiently

as

[
ρ̂j
]T

Cl =
[
ρ̂j
]T

F∗DlF︸ ︷︷ ︸
Cl

(2.24)

where Dl is a diagonal matrix with diagonal entries µl
F2D↔ hl P∗Λs

and F denotes the

2-D discrete Fourier transform matrix.
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Figure 2.2: Effect of approximations on the run time of the proposed algorithm
and comparison of SNR: The approximations introduced in the proposed method
enable efficient computation of the sub-problems (2.17) and (2.18) using fast Fourier
transforms (FFTs). This results in a faster convergence (7.5 fold speed up) to the
same solution as the one obtained using the IRLS (direct) method.

Using (2.24), we simplify (2.21) as,

hT(ρ̂) ≈ [ρ̂]TQ∗



DM . . . 0

DM−1 DM
...

...
...

. . .

D1 · · · 0

0 D1 DM

...
... · · ·

...

0 0 · · · D1


︸ ︷︷ ︸

[D(h)]T

Q

where each of the matrices Dl are diagonal matrices and the dimension of D(h)T

is PQT × PQk with k = T −M + 1. Here, [ρ̂]T = [ρ̂1, . . . , ρ̂T ]T and Q∗ = I
⊗

F∗

is a block diagonal matrix with the diagonal blocks being the inverse 2-D Fourier
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transform matrix. Thus, we can express ‖h T(ρ̂)‖2 as ‖D(h)Q∗ ρ̂‖2.

Using the above relation and substituting for the first term in (2.19) we obtain,

ρ̂∗ = arg min
ρ̂

M∑
i=1

‖D(h(i))Q∗ρ̂‖2
2 +

µp

2
‖A(ρ̂)− b‖2

2 (2.25)

The above equation can be solved by taking its gradient and setting it to zero. The

gradient is given by

2Q

( M∑
i=1

(D(h(i)))∗D(h(i))︸ ︷︷ ︸
G

)
Q∗ρ̂+ µp A∗Aρ̂ = µp A∗b (2.26)

Note that prior to solving (2.26), G can be precomputed efficiently. Denote E∗ =

[DM ,DM−1 . . . ,D1]. In order to populate the entries of (D(h(i)))∗D(h(i)), we need to

compute one product (EE∗)(i), and the sum of k = (T−M+1) sparse matrices. Each

sparse matrix contains a shifted version of (EE∗)(i) as the only non-zero block. After

precomputing G, we only need a few iterations of conjugate gradient (cg) algorithm

to solve (2.26).

2.3.2 Weight update

The first step in computing the weight matrix H
1
2 involves forming the Gram

matrix R = T (ρ̂) T (ρ̂)∗. The direct computation of R requires the evaluation and

storage of the lifted matrix T (ρ̂), which will be a computationally expensive and

memory intensive operation. Instead we propose an efficient way to compute the
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Figure 2.3: Effect of approximations introduced in the proposed method on the re-
covery of coil combined T2 weighted images from 30 percent uniform random Fourier
measurements: One frame (4th Echo, TE = 40ms) of the image sequence correspond-
ing to the ground truth is shown in (a) along with the frame of the sampling mask
in (e). The 4th echo of the reconstructed image sequence using proposed method (b)
is compared with those obtained using IRLS (direct) in (c) and GIRAF in (d). The
corresponding error images are shown in (f)-(h). The estimated T2 maps, which were
multiplied by a mask to remove the background and the CSF region, are shown in
(i)-(iv) and the corresponding error maps are shown in (v)-(vii).

Gram matrix. Specifically, we assume R to be partitioned in the following way:



R1,1 R1,2 . . . R1,M

R2,1 R2,2 . . . R2,M

...
... · · · ...

...
... · · · ...

RM,1 RM,2 · · · RM,M


(2.27)
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Algorithm 1: Proposed algorithm for the recovery of exponential image time
series

Initialize ρ̂(0) and choose ε(0) > 0;
for n = 1 to Nmax or tolerance threshold reached do

Step1: Weight matrix update:
Compute each block Rp,q of the Gram matrix R using (2.28) and (2.29);

Compute the eigen values and eigen vectors {λ(i),u(i)}Mi=1 from the eigen
decomposition of R;
Evaluate the null space vectors:

h(i) =
√
αi(u

(i))∗, where α(i) = (λ(i) + ε(n−1))
p
2
−1;

Step2: Least Squares update:
Solve the least squares problem:
ρ̂(n) = arg minρ̂

∑M
i=1 ‖D(h(i))Q∗ρ̂‖2

2 + µp
2
‖A(ρ̂)− b‖2

2

using Conjugate gradient (CG) method;

Choose ε(n) such that 0 < ε(n) ≤ ε(n−1);

end

where the above matrix has M column and row partitions and Ri,j is a matrix block

of dimension N1N2 × N1N2. We obtain a general expression for the matrix block

corresponding to the pth row and qth column partition of R as

Rp,q =
k∑
i=1

T(ρ̂p+i−1)T(ρ̂q+i−1)∗ (2.28)

where k := T −M + 1. To compute Rp,q, we use the relation in (2.22) and simplify

T(ρ̂i)T(ρ̂j)
∗ as

Pi,j = T(ρ̂i)T(ρ̂j)
∗ = P∗Λs

C(ρ̂i)C(ρ̂j)
∗︸ ︷︷ ︸

C(g)

PΛs (2.29)

where the entries of C(g) are obtained from the array g. The entries of g are given by

F(ρi◦conj(ρj)), where ρi and ρj are the images corresponding to the Fourier samples

ρ̂i and ρ̂j respectively, F denotes a 2-D DFT matrix, conj denotes the conjugate

operation and ◦ denotes point-wise multiplication. Hence the entries of every row of

Pi,j can be populated by performing a sliding window operation that extracts and

vectorizes a N1 ×N2 patch from a (2N1 − 1) × (2N2 − 1) neighborhood.
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Next the weight matrix H
1
2 is efficiently computed from the eigen decomposition

of R. Let U represent the orthogonal basis of eigen vectors u(i) and Λ be a diagonal

matrix containing the eigen values λ(i). Then the eigen decomposition of R is given

by UΛU∗. Substituting for R in (2.18) and simplifying further we obtain,

H = [U(Λ + εI)U∗]
p
2
−1 = U(Λ + εI)

p
2
−1U∗.

Hence, one choice of the matrix square root H
1
2 is

H
1
2 = (Λ + εI)

p
4
− 1

2 U∗ =
[
(h(1))T , . . . , (h(M))T

]T
where h(i) =

√
α(i)(u(i))∗ and α(i) = (λ(i) + ε)

p
2
−1.

2.3.3 Implementation details

The details of the alternating minimization algorithm to solve (2.17) and (2.18)

are described in Algorithm (1). We initialize and vary the value of ε as described

in [47]. Specifically, we initialize ε as ε(0) = λmax/100, where λmax is the largest

eigen value of the gram matrix T (ρ̂init)T (ρ̂init)
∗, which is formed from the initial

guess ρ̂init = ρ̂(0). Every iteration, we decrease the value of ε as ε(n) = ε(n−1)/γ,

γ > 1. For all our experiments we set γ = 1.4. We run the optimization algorithm for

different values of the regularization parameter µ and choose the value which results

in the best signal to noise ratio (SNR), where SNR := 20 log ‖Xg‖2
‖Xg−Xr‖2 . Here Xg

and Xr are the ground truth and the reconstructed images respectively. To observe

the behavior of µ across different acceleration factors, we reconstructed images at

different acceleration factors ranging from six to twelve. We observed that the optimal

µ estimated was fairly constant across different acceleration factors. In the absence

of ground truth data it is not possible to compute the SNR. Hence choosing the

regularization parameter using the above-mentioned approach is not feasible. In
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Figure 2.4: Comparison of the proposed method with different reconstruction schemes
on the recovery of coil combined data from 30 percent uniform random Fourier mea-
surements: One frame (4th Echo, TE = 40ms) of the image sequence is shown in
(a)-(e) along with the frame of sampling mask in (f). The corresponding error images
are shown in (g)-(j). The estimated T2 maps, specifically the enclosed rectangular
region is zoomed and is shown in (i)-(v) with the corresponding error maps shown in
(vi)-(ix). Here the maps were multiplied by a mask to remove the background and
the CSF region. The improvements offered by the proposed scheme can be easily
appreciated from the T2 error images and the estimated T2 maps.

such cases, we could employ heuristic techniques such as the L-curve method [19] or

more sophisticated methods [66,67], where risk functions approximating the SNR are

used to estimate the optimal regularization parameter. We plan to investigate such

techniques for the selection of regularization parameter in the future. We implemented

the algorithm in MATLAB, which runs on a Linux workstation with a 3.6Ghz Intel

Xeon CPU and 32GB RAM.
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Figure 2.5: Comparison of the proposed method with different reconstruction schemes
on the recovery of multi channel data at an acceleration factor of 12: In the first row
of A), B) and C) three frames corresponding to 2nd Echo (TE=20ms), 9th Echo
(TE=90ms) and 11th Echo (TE=110ms) are shown in (a)-(e) along with the frame
of the sampling mask in (f). The corresponding error images are shown in (g)-(j)
in the second row of A), B) and C). In D), the mean signal decay is plotted over a
gray matter (Region A) and white matter (Region B) region for the ground truth
and all the competing methods. The signal within the red ROI was corrupted due to
some non-idealities in the acquisition. In E), the estimated T2 maps, specifically the
enclosed rectangular region is zoomed and is shown in (i)-(v) with the corresponding
error maps shown in (vi)-(ix). Here the maps were multiplied by a mask to remove
the background and the CSF region. We observe that the reconstructions from the
proposed method have fewer errors, which can be appreciated from the error maps of
the T2 weighted images as well with the noise-like artifacts in the T2 maps.

2.4 Results

We demonstrate our algorithm on a fully sampled axial 2-D dataset, which was

acquired on a Siemens 3T Trio scanner with 12 coils using a turbo spin echo sequence.

The scan parameters were: TR = 2500 ms, slice thickness = 5 mm, Matrix size =

128×128 and FOV = 22×22 cm2. By varying the echo times (TE) from 10 to 120

ms, we acquired T2 weighted images at twelve equispaced TE.
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Figure 2.6: Plot showing the SNR of the reconstructions at all the echo times for the
proposed and the competing methods.

2.4.1 State-of-the-art methods for comparison

We compare the proposed method with three state-of-the-art methods: k − t low

rank [37], blind compressed sensing (BCS) [7], and the pixel-wise structured low-rank

prior in (2.13), which we refer to as HLR-Voxel. An IRLS algorithm [47] was employed

to solve the nuclear norm minimization in (2.13). We compared the methods for both

single and multi-channel recovery experiments.

We also demonstrate the improved speed up offered by the proposed scheme by

comparing it with traditional IRLS as well as the multidimensional GIRAF algorithm

[61]. For the traditional IRLS (direct) method, we solve (2.17) and (2.18) directly

without introducing FFT based approximations. After the images are reconstructed,

we estimate the T2 maps by fitting a mono exponential model to every pixel.
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2.4.2 Single channel recovery

We demonstrate the proposed method on the recovery of single channel T2-weighted

data from 30% uniform random measurements and compare it with the three afore-

mentioned methods. To create the single channel data, we performed a principal

component analysis (PCA) on the original multi-channel data and selected the most

significant component to obtain a coil compressed data. For the proposed method, a

filter of size 122×122×2 was used to recover the images. The value of p = 0.6 for the

Schatten norm was chosen for both the k − t low rank and the proposed algorithm.

The results from the different methods are shown in Fig. 2.4. We observe that the

T2 weighted images and the estimated T2 maps from the proposed method have fewer

errors and artifacts than the competing methods.

2.4.3 Multi-channel recovery

In Fig. 2.5, we compare the different methods on the recovery of multi-channel

T2-weighted data from twelve fold under-sampled Fourier measurements. The data

was retrospectively under-sampled using a combination of uniform Cartesian and a

pseudo-random variable density sampling patterns. Specifically, we uniformly under-

sampled the x and y directions by a factor of 2 and refer this sampling mask as a

2 × 2 uniform Cartesian mask. To increase the incoherence between the frames, we

also shifted every frame of the mask by zero or one unit (done randomly) along the

x and y directions. We achieved an acceleration factor of twelve by combining the

four fold uniform Cartesian mask with a three fold pseudo-random variable density

undersampling pattern. Three frames of the sampling mask corresponding to the

three echoes are shown in (f) in Fig. 2.5 A), B) and C). We used a Schatten p = 0.7

for both the proposed and the low rank methods. Also for the proposed method, a

filter of size 102×102×10 was used in the recovery of images. Reconstructions corre-

sponding to three echos with TE = 20ms, TE = 90ms and TE = 110ms respectively

and the T2 maps for all the methods are shown in A) through C) and E) respectively
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Table 2.1: Effect of filter size on SNR of T2 weighted images.

(a) Varying spatial dimension

filter size SNR

128x128x10 28.05

122x122x10 30.30

114x114x10 31.00

108x108x10 31.12

102x102x10 31.21

100x100x10 31.20

(b) Varying temporal dimensions

filter size SNR (dB)

102x102x11 30.80

102x102x10 31.21

102x102x7 31.13

102x102x4 30.96

102x102x2 30.78

102x102x1 29.88

in Fig. 2.5. We observe that the T2 weighted images from the proposed method

have fewer errors than the competing methods. Also, the T2 maps corresponding to

the proposed method are a lot smoother and have fewer artifacts, especially in the

enclosed rectangular region, than those obtained from the competing methods. In

Fig. 2.5 D), we plot the mean signal decay over two regions of interests for all the

methods. We observe that the signal corresponding to the proposed method matches

closely to the ground truth signal in both cases. We also observe that the mean signal

decay from the ROI (in red) in the gray matter is not exactly an exponential function.

Nevertheless, the proposed signal model (5.1) approximates the signal as a linear com-

bination of exponentials and captures the signal decay quite well. This suggests that

the performance of the algorithm may degrade gradually, when the signal deviates

from an exponential model. In Fig. (2.6), we plot the Signal to Noise ratio (SNR) of

the reconstructions at each echo time for the proposed and the competing methods.

We observe that for all the methods, the SNR increases for the first few echoes and

then decreases for the remaining echoes, which could be due to non-ideal acquisition

conditions. Nevertheless, the SNR of the images obtained from the proposed method

is higher at all echo times, when compared to the state-of-the-art methods.
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2.4.4 Effect of filter size on image recovery

We study the effect of filter size or equivalently the dimensions of the Toeplitz

matrix on the SNR of the T2-weighted images recovered from twelve fold under-

sampled multi-channel Fourier data in Table 2.1. We study the effect of varying the

spatial dimensions of the filter on the SNR in Table 2.1a. We observe that the filters

with a smaller spatial support (102× 102× 10) provide improved results than larger

filters, thus demonstrating the benefit of exploiting spatial smoothness. A filter with

large spatial dimensions (128 × 128 × 10) fails to exploit any spatial smoothness.

We demonstrate the benefit of exploiting the annihilation relations, which takes into

account the exponential structure of the signal along the parameter dimension at

every pixel, in 2.1b. We observe that a filter having multiple taps along the temporal

dimension (102× 102× 10) results in reconstructions with a better SNR than those

obtained using a filter with size (102 × 102 × 1), which just exploits joint sparsity.

From these experiments, we also note that varying the spatial support of the filter

has a higher impact on the SNR than the temporal support.

2.4.5 Effect of approximations on image recovery

We study the effect of the approximations, introduced in the proposed method, on

the recovery of coil compressed T2-weighted data from 30% uniform random Fourier

measurements. We note that the approximations introduced in the proposed method

enable efficient computation of the sub-problems (2.17) and (2.18) using Fast Fourier

transforms (FFT). This results in a faster convergence to the solution when compared

to the IRLS-direct method, as shown in Fig. 2.2. Specifically, we observe a 7.5 fold

speed up due to the proposed algorithm. In Fig. 2.3, we observe that the T2 weighted

images and the T2 maps corresponding to the proposed method have similar SNR

and image quality compared to those obtained using the IRLS-direct method. These

results demonstrate the effectiveness of the approximations introduced in the proposed

method. From the figure, we also observe that the images and the maps obtained
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from the GIRAF algorithm have a lot of errors and artifacts. This is because the

approximations in the GIRAF algorithm break down in our setting thus resulting in

poor T2 estimates.

2.5 Discussion and conclusion

We introduced a novel structured matrix recovery algorithm to recover an im-

age series with smoothly varying exponential parameters from under-sampled Fourier

measurements. As the proposed method exploits the spatial smoothness of the pa-

rameters and the exponential structure of the signal along the parameter dimension

at every pixel, it results in improved reconstructions over the other state-of-the-art

methods. The comparisons on T2 estimation problems in the context of MR param-

eter mapping demonstrate the potential of this scheme, with reduced errors in both

the reconstructed images and T2 maps compared to state of the art methods.

As the size of the filter is not known apriori, we treated it as an optimization

parameter and chose the dimension that resulted in the best SNR. We observed

that the spatial dimensions of the filter had a greater effect on the SNR than the

temporal dimensions. Specifically, a filter with smaller spatial support (102× 102×

10) provided improved reconstructions with higher SNR than a filter of size 128 ×

128× 10, which failed to incorporate any spatial smoothness. Hence as the proposed

matrix prior incorporates spatial smoothness, it eliminates the need for additional

spatial regularizers or priors to further constrain the image recovery. Similarly, the

reconstructions using a filter with multiple taps along the temporal dimension (102×

102×10) had higher SNR than the filter with one tap, which exploits the joint sparsity

of the Casorati matrix formed from the Fourier samples. We also observed that for

both the multi-channel and coil combined data, the filter sizes yielding reconstructions

with highest SNR were different. The size of the filter reflects the complexity of the

model which is usually dependent on the number of measured samples, number of

coils etc. Since the model complexity is different for both the datasets, it resulted in
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different sizes of the filter.

To solve the optimization problem, we employ an iterative least squares (IRLS)

based strategy, which decouples the original problem into two sub-problems. We

adopt a hybrid approach to keep the memory demand and computational complexity

low. Specifically, we introduce novel approximations, which allow us to solve the

sub-problems using FFTs. This resulted in a faster convergence to the same solution

as the one obtained using the IRLS (direct) method. The proposed algorithm was

approximately 7.5 times faster than the IRLS (direct) method. We also observed

that the GIRAF algorithm broke down in our setting resulting in poor reconstructed

images and T2 maps.

The proposed framework may be extended to the multi-dimensional parameter

setting. For instance, in MR parameter mapping, if the signal along the parameter

dimension at every pixel varies as a function of both TR and TE, then the filter

coefficients will be dependent on both exponential parameters T1 and T2. Hence, an-

nihilation relations similar to (3.4) and (2.5) can be derived, which can be compactly

represented using a low rank Toeplitz matrix. The low rank property of the Toeplitz

matrix can then be enforced to recover the images from under-sampled Fourier mea-

surements. We plan to investigate this problem in the future.

The results in Fig.(2.5).D indicate that the performance of the algorithm degrades

gradually, when the voxel time profiles deviate from the exponential signal model.

Specfically, such signals may be reasonably approximated as a linear combination of

few exponentials. In addition, the use of the low-rank penalty that only requires the

matrix to be approximately low-rank, rather than a low-rank constraint, also allows

the signal to deviate from the exponential model. We did not account for the presence

of artifacts due to stimulated echoes [6,10,22,41,42] which are formed when a turbo

spin echo sequence is used. Further investigation is required to study the impact of

such errors.
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CHAPTER 3
FIELD MAP COMPENSATION FOR CARTESIAN TRAJECTORIES:

DEMONSTRATING ON ECHO PLANAR IMAGING (EPI) DATA

3.1 Introduction

Echo Planar Imaging (EPI), which is a fast MR imaging scheme, is widely used to

reduce scan time in applications including diffusion MRI and parameter mapping [65].

The capability to provide high temporal resolution makes EPI a popular choice in

many dynamic MR imaging studies, including perfusion MRI [65] and imaging of

the BOLD contrast in functional MRI (fMRI) [30]. In recent years, there has been

a push towards achieving higher spatial and temporal resolution in many of these

applications. However, the long read-out associated with EPI makes it particularly

susceptible to off-resonance related geometric distortion artifacts, resulting from mag-

netic field (B0) inhomogeneities. B0 inhomogeneities arise primarily due to difference

in magnetic susceptibility between air, tissue, and bone, which are particularly severe

around the sinus and air canal regions. Field inhomogeneity results in phase modu-

lation that is independent of imaging gradients and manifest as geometric distortions

in the image; the poor correspondence of the EP images with high spatial resolution

anatomical images makes it difficult to interpret the data.

The widely used solution is to reduce the duration of the readout using multi-

shot strategies [2]. However, the readout duration has to be significantly reduced

to bring distortions down to reasonable levels. This translates to a large number

of shots resulting in increased scan time and motion sensitivity [2]. An alterna-

tive is to correct for the B0 distortion in EP images, which is a well-researched

field [1, 13, 15, 21, 23, 25, 26, 28, 29, 40, 43, 48, 50, 53–55, 69, 70, 73, 74]. Current meth-

ods can be broadly classified as calibration-based or calibration-free algorithms. In

calibration-based methods, a field map is estimated prior to the EPI scan [68], which

is then used in the recovery of a distortion-free image. The reconstruction algorithms

range from computationally efficient conjugate phase methods [40, 43, 53, 54, 69, 70]
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to more sophisticated and computationally expensive model based reconstruction

methods [15, 21, 48, 73]. The main challenge with calibration based methods is the

mismatch between the estimated and the actual field map, resulting from patient mo-

tion, scanner drift and field inhomogeneity differences due to physiological changes

such as respiration. To overcome these issues, calibration-less methods which jointly

estimate the field map and the distortion-free image from the acquired data have been

proposed [29, 50, 74]. An alternative strategy is image space correction using regis-

tration [1, 23], which can work with magnitude images acquired using two different

sampling trajectories. The main challenge with the above calibration-less methods

is the non-convex nature of the optimization algorithms, which translates to high

computational complexity and risk of local minima.

In this work, we propose a fast calibration-free structured low rank framework for

compensating field inhomogeneity artifacts in EPI. We combine the information from

two EPI acquisitions, which differ in echo-time (TE). We reformulate the field inho-

mogeneity compensation of the 2-D EPI dataset as the the recovery of an image time

series (2D+time dataset) from highly undersampled measurements. Upon recovery,

the distortion-free image corresponds to the first image in the time series. We note

that a similar strategy has been employed in the recent work of T2 shuffling [75], even

though the proposed algorithm and application are fundamentally different. In our

work, the temporal intensity profile of each pixel is assumed to decay exponentially

with a frequency and damping constant, which are dependent on the fieldmap and

T ∗2 value respectively at that pixel. We also assume that the exponential frequency

shift and damping vary smoothly across space, which allows us to exploit the smooth

nature of the B0 inhomogeneity. Under these assumptions, the k − t space sam-

ples of the image time series can be annihilated by convolutions with several linearly

independent finite impulse response filters, whose filter taps are dependent on the

exponential parameters. The convolution between the signal and the filter can be
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compactly represented as the product of a multi-fold Toeplitz matrix formed from

the Fourier samples, with the vector of filter coefficients. The annihilation relations

imply that the Toeplitz matrix has several linearly independent null space vectors and

hence is low rank [3,4]. We exploit the low rank property of this matrix to complete

its missing entries and recover the image series.

The direct implementation of the above algorithm requires the evaluation and

storage of a large multi-fold Toeplitz matrix, which is computationally expensive.

Hence, we introduce a fast two-step approach to solve this problem. In the first

step, we form a sub-matrix of the above Toeplitz matrix by selecting the fully sam-

pled rows, and estimate the null space from it. Since this submatrix is an order of

magnitude smaller than the original Toeplitz matrix, the first step has low memory

demand and is computationally efficient. These null-space vectors are then used to

recover the missing entries of the original Toeplitz matrix in the second step. Specif-

ically, we seek a matrix that is orthogonal to the estimated null-space vectors, while

satisfying data-consistency. To reduce the computational complexity of the second

subproblem, we estimate the signal subspace by compactly representing the signal

using an exponential signal model. This facilitates the easy estimation of the signal

from its measurements. This approach reduces the number of effective unknowns to

be solved and results in a very fast and efficient algorithm. It also eliminates the need

to store the entries of the Toeplitz matrix. We demonstrate the effectiveness of the

proposed approaches by performing simulations on a numerical brain phantom and

also applying it on phantom and human data.

The proposed field inhomogeneity compensation scheme is an addition to the

growing family of structured low rank methods for continuous domain compressed

sensing [4,17,27,57,60,61], parallel MRI [39,71], calibration-free correction of multi-

shot EPI data [44], correction of Nyquist ghost artifacts in EPI [32,38,46], parameter

mapping [3, 4], and trajectory correction in radial acquisitions [45]. None of these
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schemes are directly applicable to field inhomogeneity compensation in EPI. The

novel contributions of this work are:

1. We reformulate the distortion correction of the 2-D EP image as the recovery

of a 3D (2D + time) dataset from highly undersampled measurements. This

reformulation allows us to use a structured low rank prior, which is designed to

exploit the exponential structure present in the 3-D dataset, to recover it. To

the best of our knowledge, this approach has not been adopted before for field

inhomogeneity compensation in EPI.

2. We introduce fast alternatives to current two-step null-space based approaches

[18, 58, 60] to significantly reduce the computational complexity and memory

demand of the algorithm. The proposed signal subspace approach relies on the

prior information that there is only one exponential per pixel. Since the central

k-space region is not fully sampled as in [18,58,60], we gather the fully sampled

rows of the Toeplitz matrix which correspond to the measurements from the

two EPI datasets to estimate the signal subspace.

Though this work is conceptually similar to [50], there are fundamental differences.

In [50], the off-resonance frequencies and relaxation values along each column of the

image are estimated independently using Prony’s algorithm. Since the estimates are

obtained as an unsorted list, an additional sorting step is needed to ensure a smoothly

varying intensity and phase values. When the noise level is high or when the field

map is non-smooth, the sorting process can result in erroneous estimates; [50] relies

on additional interpolation steps to replace the intensity values in the discontinuous

regions. In contrast, we jointly estimate the field map and relaxation map at all the

locations by modeling them as a smooth function in space. The proposed algorithm

does not require any sorting and can account for low SNR signal regions.
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Figure 3.1: Illustration of the time segmented approach and the measurement model:
(a) The data acquired from the two EPI acquisitions and their corresponding uncor-
rected IFFT reconstructions are shown. A time segmentation approach is adopted
such that the acquisition window of the two datasets is divided into a number of seg-
ments. (b) By combining the time-segmented volumes of both the datasets, a k-space
volume with many missing entries is formed. Data from the two EPI acquisitions lie
on the yellow and green oblique planes respectively. (c) The operators F and S are
defined. The data ρ̂ can be undersampled using the operator S to obtain the volume
shown in (b).

3.2 Background

3.2.1 EPI signal model in the presence of B0 inhomogeneity

We model the acquired EPI signal as [51]:

s(k(t)) =

∫
ρ0(r)e−γ(r)t︸ ︷︷ ︸

ρ(r,t)

e−j2πk(t)·rdr + η(t), (3.1)

where k(t) is the k-space location sampled at time t and s(k(t)) is the corresponding

measurement. ρ0(r) denotes the transverse magnetization of the object and η rep-

resents zero mean white Gaussian noise. The term γ(r) is a complex quantity that

captures the field inhomogeneity induced distortion:

γ(r) = R∗2(r) + jω(r). (3.2)
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Here R∗2(r) and ω(r) are the relaxation and off-resonance effects respectively at the

spatial location r. Note that if γ(r) = 0, the relation in (3.1) simplifies to a simple

Fourier transform between the object ρ0(r) and s(k(t)).

3.2.2 Discretization using time segmentation

Since (3.1) contains the field distortion term γ(r), it is no longer a Fourier in-

tegral and cannot be efficiently computed using the fast Fourier transform (FFT).

According to the time segmentation approach [53], the data acquisition window can

be divided into several small time segments such that the temporal evolution due to

field inhomogeneity (e−γ(r)t) is assumed to be constant in each segment. For short

time segments, this is a fairly accurate assumption and previous works [53] have em-

ployed this idea to reduce the computational complexity of image reconstruction in

the presence of field inhomogeneity.

3.2.3 Multi-exponential signal model and annihilation

In [4], we model the signal at every pixel location r as a linear combination of L

exponentials:

ρ[r, n] =
L∑
i=1

αi(r) βi(r)n, n = 1, 2, . . . (3.3)

where αi(r) ∈ C is the amplitude and βi(r) ∈ C is an exponential parameter that is

dependent on the underlying physiology. Specifically, the imaginary part of βi can

capture the off-resonance effects in the ith component, while the real part can capture

the relaxation effects. The exponential signal in (3.3) can be annihilated by a 1-D

FIR filter g[r, n] [72]:
L∑

m=0

ρ[r,m] g[r, n−m] = 0, ∀r. (3.4)

where (3.4) represents a 1-D convolution between the signal ρ[r, n] and a L+1 tap filter

g[r, n]. The coefficients of the filter are specified by its z transform, g[r, z] =
∏L

i=1(1−

βi(r)z−1). The number of taps of the filter g[r, n] is only dependent on the number
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of exponentials in the signal model, which is L. Note that the filter can annihilate

signals containing both off-resonance and relaxation terms. The linear predictability

relationship described in (3.4) is also exploited in [63] to estimate parameter maps of

the brain.

3.2.4 Two step subspace based image recovery

In [34], a two step subspace based approach was introduced to recover dynamic

MR images from sparsely sampled Fourier measurements. In the first step, a subspace

of temporal basis functions was estimated from a fully sampled calibration data. This

was followed by a subspace aware recovery in the second step, where the images are

reconstructed using a least squares approach. This two-step strategy was extended in

[18,58,60] for single image recovery using low rank Toeplitz matrix priors. Specifically,

a fully sampled calibration region was acquired in the center of k-space. The rows

of the Toeplitz matrix whose entries correspond to this region was used to estimate

the null-space. Using the estimated null space, the image is then reconstructed using

a least squares approach in the second step. We note that the Toeplitz priors used

in [18, 58, 60] are designed to exploit sparsity and phase relations in 2-D images and

are fundamentally different from the exponential priors used in this work.

3.3 Proposed work

We focus on the field inhomogeneity compensation from dual-echo acquisitions in

this section. In Section 3.3.1 & 3.3.2, we show how field inhomogeneity compensation

can be formulated as the recovery of an image time series from highly undersampled

Fourier measurements. We model the time series by an exponential signal model,

which is characterized by spatially smooth parameters. In Sections 3.3.3, we show

that such a signal satisfies an annihilation condition, which translates to a low rank

property of the Toeplitz matrix constructed out of the signal samples. This prior

facilitates the recovery of the time series from undersampled measurements; the al-
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gorithmic details are introduced in Section 3.3.4.

3.3.1 Reformulation as time series recovery

We propose to adopt the time segmentation approach, described in Section 3.2.2,

to reformulate field inhomogeneity compensation to the recovery of an image time

series from undersampled measurements; the distortion-free image is the first image

of the recovered time series.

We assume the size of each image in the time series is N × N . Each image

corresponds to a time segment and contains only k lines of kspace. Let the time taken

to acquire one line of kspace be ∆T , which translates to a delay of T = k∆T between

two consecutive segments/images. Fig. 3.1 a) illustrates this time segmentation

approach. With this discretization, the measurements at tn = nT ;n = 1, 2, . . . N
k

, are

specified by:

bn =

∫
ρ0(r)e−γ(r)nT︸ ︷︷ ︸

ρn(r)

e−j2πkn·rdr + ηn

= An(ρn) + ηn

(3.5)

Here ρn is the image corresponding to tn = nT , while bn is its Fourier measurement.

The operator An is a linear acquisition operator corresponding to the nth segment,

which represents a fast Fourier transform followed by multiplication by the sampling

mask of the nth segment. Mathematically, An = Sn ◦ F , where Sn denotes the

sampling operator at the nth time instant, F is the Fourier operator and ◦ denotes

point-wise multiplication. Since the temporal evolution of e−γ(r)t can be safely ignored

during the duration T , the magnitude of the images ρn(r) can be assumed to have no

geometric distortion. However, due to relaxation effects the magnitude image ρn(r)

is given by ρ0(r)e−R
∗
2(r)nT ; the first image ρ1(r) is least affected by R∗2. Since bn

corresponds to only a small fraction of the k-space measurements of ρn, the direct

recovery of ρn(r) from bn is challenging.
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3.3.2 Time series recovery from dual echo acquisition

We consider the joint estimation of the distortion (field inhomogeneity and relax-

ation) map and the distortion-free image from the given set of Fourier measurements.

This translates to estimating two complex unknowns, ρ0(r) and γ(r), at every pixel.

By a simple degrees of freedom argument, we deduce that at least two complex mea-

surements are needed at each pixel to estimate all of the unknown parameters. For

this purpose, we acquire two gradient echo EPI datasets, where the readout of the

second dataset is delayed by m∆T, m ∈ Z; the echo times are separated by m∆T .

In the illustration in Fig. 3.1 (a), the Fourier measurements corresponding to the two

EPI acquisitions can be visualized as the yellow and green oblique planes for the case

m = k.

Let b
(1)
n and b

(2)
n represent the undersampled Fourier measurements corresponding

to the two EPI datasets. We express them using the linear acquisition operator An,

defined in (4.4):

b(1)
n = An(ρn); n = 1, 2, . . .

N

k

b
(2)
n−m

k
= An−m

k
(ρn); n =

m

k
+ 1, . . .M

(3.6)

where M := N
k

+ m
k

. We have assumed that the two EPI datasets have been time-

segmented into N
k

segments and each segment contains exactly k lines. For example,

when N = 64 and m, k = 4, the time segmented volume contains 16 segments or

frames. When m = k, we can observe that the phase evolution present in the second

segment of b
(1)
n and first segment of b

(2)
n will be the same, the phase evolution present

in the third segment of b
(1)
n and second segment of b

(2)
n will be the same and so on. We

combine the measurements from both the acquisitions and express them compactly:

b = A(ρ) + η (3.7)



www.manaraa.com

54

where ρ = [ρ1,ρ2, . . .ρM ] is the time series of images, A is the measurement operator

and η represents zero mean white Gaussian noise. The formation of the combined

k-space volume corresponding to the image series ρ, for the case m = k, is illustrated

in Fig. 3.1 (b). For an illustration of the measurement model, refer to Fig. 3.1 (c).

Thus by adopting the time segmentation approach, the field inhomogeneity cor-

rection problem was transformed into a problem of recovering an image series from

highly undersampled and structured Fourier measurements. The distortion-free im-

age corresponds to the first frame of the recovered volume. However, (3.7) is an

ill-posed problem and direct recovery of ρ from b is not possible without enforcing a

signal prior.

3.3.3 Annihilation of single exponential with smoothly varying parameters

We will now focus on a single exponential signal model (L = 1), which is a special

case of the model considered in (3.3). From Section 3.2.3, it follows that ρ[r, n] can

be annihilated by a two tap FIR filter d[r, n], whose filter coefficients are [1,−β(r)].

Note that the linear prediction/annihilation relations in (3.4) and the work in [63]

consider the independent annihilation of the signal at each pixel. In the EPI setting,

the exponential parameter γ(r) depends on the distortion map and can be assumed to

vary smoothly across the spatial locations. Hence, the filter coefficients which depend

on the exponential parameters can be assumed to be smooth functions of r. Plugging

L = 1 in (3.4) and taking the 2D Fourier transform along the spatial dimension r, we

obtain the following 3-D annihilation relation:

ρ̂[k, n]⊗ d̂[k, n] = 0. (3.8)

where ρ[r, n]
F2D↔ ρ̂[k, n] and d[r, n]

F2D↔ d̂[k, n] are the 2-D Fourier coefficients of ρ[r, n]

and d[r, n] respectively, while ⊗ denotes 3-D convolution. Since the inhomogeneity

map is smooth, we assume d̂[k, n] to be a bandlimited 3-D FIR filter; its spatial
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bandwidth controls the smoothness of the parameters, while its bandwidth along the

temporal dimension is dependent on the number of exponentials in the signal model,

which is two in this case. When the filter dimensions are over-estimated, there will

be multiple filters d̂1[k, n], .., d̂P [k, n] that satisfy (3.8) [4, 60].

Expressing the above annihilation relations in compact matrix notation, we obtain

T (ρ̂)
[
d̂1, . . . , d̂P

]
= 0 (3.9)

where T is a linear operator that maps a 3-D dataset ρ̂ into a multi-fold Toeplitz

matrix T (ρ̂) ∈ Cm×s. Here m refers to the number of valid convolutions between

ρ̂[k, n] and d̂[k, n], represented by the red cuboid in Fig. 3.2. Λ denotes the support

of the filter d̂[k, n], indicated by the blue cuboid in Fig. 3.2 and s = |Λ| (product of

the filter dimensions). d̂i represents the vectorized 3-D filter d̂i[k, n]. From (3.9), we

observe that T (ρ̂) has a large null space and hence has a low rank structure.

3.3.4 Two step algorithm

First we describe the extension of the two-step null-space based strategy described

in Section 3.2.4, before introducing the signal subspace approach in Section 3.4.

3.3.4.1 Step 1: Estimation of the null space

The null space of the multi-fold Toeplitz matrix T (ρ̂) can be estimated from the

observed samples. Similar to [18,58,60], we construct a sub-matrix of T (ρ̂), denoted

by Ts(ρ̂), by selecting rows that are fully sampled. Since the acquisition of fully

sampled calibration region is not possible in the EPI setting, we extract fully sampled

rows of the Toeplitz matrix whose entries correspond to the measured data; they are

shown to lie on the dotted yellow and green oblique planes in Fig. 3.1.(a)&(b). Note

that this is possible since the filter has only two taps along time. When sufficient

number of rows are measured, the null-space of the sub-matrix Ts(ρ̂) is the same
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Figure 3.2: Illustration of the construction of the matrices T (ρ̂) and Ts(ρ̂) from the
combined k-space volume ρ̂: The 3D convolution between a filter with support Λ and
ρ̂ results in a multi-fold Toeplitz matrix T (ρ̂) with many rows filled with zeros; the
valid convolutions are defined inside the red cuboid. The rows of T (ρ̂) correspond
to cuboid shaped neighborhoods of the Fourier samples. A smaller matrix Ts(ρ̂) is
constructed from T (ρ̂) by selecting only fully sampled rows.

as that of the full matrix T (ρ̂). When data from multiple channels are available,

Toeplitz matrices corresponding to different coils are concatenated vertically to form

T (ρ̂). See Fig. 3.2 for the construction of T (ρ̂) and Ts(ρ̂). We obtain the null-space

of Ts(ρ̂) as

D = VQ, (3.10)

where V are the eigen vectors of R = [Ts(ρ̂)]∗ [Ts(ρ̂)] and is estimated from the eigen

decomposition of R = VΛV∗. The matrix Q in (3.10) is specified by Q = Λ−q/2,

where q is a small number between 0 and 0.5. Since the eigen values are small for

null space vectors, more weight is given to them. Hence this strategy eliminates the

need to threshold the eigen values to determine the null space.

3.3.4.2 Step 2: Null space aware recovery of distortion-free image

Once the null space matrix D is estimated from Ts(ρ̂), we use it to recover the

entire k-space volume by solving the following optimization problem in the Fourier
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domain:

min
ρ̂
‖Sρ̂− b‖2

2 such that T (ρ̂)D = 0 (3.11)

where S is the sampling matrix.

3.4 Accelerating recovery using signal subspace

The second step of the algorithm involves solving (3.11). However its direct im-

plementation is associated with high memory demand and computational complexity

due to the construction and storage of the large multi-fold Toeplitz matrix. To over-

come this problem, we introduce a signal subspace approach that exploits the prior

information of one exponential per pixel to accelerate the recovery. Specifically, we

re-express the null-space constrained problem in (3.11) as

min
ρ
‖A(ρ)− b‖2

2 such that ρ[r, n] = α(r)β(r)n, (3.12)

where β(r) is the exponential parameter.

We note that (3.12) is a fast and memory efficient alternative to a penalized

version of (3.11). To see this, we analyze the memory demand and computational

complexity of the gradient computations in one CG iteration of (3.11) and (3.12).

For (3.11), the memory and computational complexity are determined by the term

T ∗(T (ρ̂)DDH) in the gradient; here T ∗ is the adjoint operator corresponding to T .

Memory demand: We assume each image to be of size N × N , T to be the

number of time frames, and the dimensions of the filter to be p×p×2. The dominant

term determining the memory demand is the space to store the matrix T (.). Thus,

the memory demand of the gradient term is O((N−p)2p2T ). In contrast, the gradient

of (3.12) only requires matrices of the same size as that of the dataset, resulting in a

memory demand of O(N2T ). The analysis shows that the proposed scheme provides

a factor of ≈ p2 fold reduction in memory demand compared to the direct approach
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specified by (3.11).

Computational complexity: The dominant term in the evaluation of the gra-

dient of (3.11) is the multiplication of the Toeplitz matrix by DDH , which requires

O((N − p)2p2T ) operations. Note that for this formulation, all the computations

are performed in the Fourier domain. In contrast, the unconstrained formulation of

(3.12) is solved in the image domain. The computational complexity of the gradient

computation is determined by the number of FFTs and IFFTs. Thus the number of

operations is O(N2T logN). The proposed approach offers a speed up of (N−p)2p2
N2 logN

.

For typical values such as N = 64, p = 11 we obtain a 10 fold speed up.

To estimate β(r), first we evaluate the spatial IFFT of the null space vectors,

denoted by the columns of D. We know from (3.3), that if ρ[r, n] is composed of

a single exponential, it can be annihilated by a unique two-tap filter. Hence, the

temporal filters di[r, n]
F2D↔ d̂i[k, n], at a specific r, will be linearly dependent. It is

sufficient to use any one of them to recover the signal in foreground pixels and this

is computationally more efficient. Note that there is a one-to-one correspondence

between exponential parameters and filter coefficients; in this case the signal recovery

can be simplified to (3.12). Unfortunately, there are multiple linearly independent

temporal filters in background pixels with very low signal. Choosing an arbitrary

vector d from the null space may result in noise amplification in the background

regions. To minimize this risk, we propose two strategies to choose a single null space

vector.

In the first strategy, we classify the pixels as foreground or background based on

the rank of the matrix (Ds(r)) formed from the temporal filters. Specifically, we

choose a single temporal filter at each r in the foreground regions, while a full rank

matrix is assumed in the background regions. In this case, we set the filter coefficients

to a small value.

A challenge with the above approach is the relatively high computational com-
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plexity, since it requires the singular value decomposition of as many matrices (Ds)

as pixels in the image. To reduce the complexity, we introduce a second strategy

which is slightly sub-optimal. In this approach, we select one temporal filter at each

pixel, irrespective of the pixel being foreground or background. The filter is chosen

such that the exponential parameters are spatially smooth. We describe these two

strategies in Sections 3.4.1 and 3.4.2.

3.4.1 Exponential parameter estimation using pixel classification

Once the null space vectors specified by the columns of D are obtained, we esti-

mate the temporal filters di[r, n] by computing the zero-padded IFFT of its columns.

At each spatial location r, we form the matrix

Ds(r) =

d1[r, 0] . . . dL[r, 0]

d1[r, 1] . . . dL[r, 1]

 (3.13)

and compute its rank. We expect the rank of Ds(r) = 1 in foreground regions, which

results in unique two tap filters at these pixels. In contrast, the rank of Ds(r) = 2 in

background regions, where the signal is very low or zero. In the first case, the eigen

vector corresponding to the maximum eigen value of Ds(r) can be chosen, and the

exponential parameters can be estimated from it as described below in (3.20). When

the rank of Ds(r) = 2, we infer that the pixel corresponds to a background region,

and assume the signal to be zero at that location. In this case, there is no unique

temporal filter and hence we set it to a small value.

To improve the estimation of the null-space vectors in the presence of noisy mea-

surements, we propose to first denoise the measurements. We formulate the denoising

of the k-space data as the following Schatten-p norm minimization:

ρ̂d
? = arg min

ρ̂d
‖ρ̂d − b‖2

2 + γ0‖T (ρ̂d)‖p (3.14)
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where γ0 is a regularization parameter, T (ρ̂d) is a multi-fold Toeplitz matrix formed

from the samples ρ̂d. ‖X‖p is the Schatten-p norm, defined as ‖X‖p := 1
p
Tr[(XHX)

p
2 ] =

1
p

∑
i σ

p
i , where σi are the singular values of X. We employ the iterative re-weighted

least squares (IRLS) based algorithm recently proposed in [4] to solve (3.14). This

scheme alternates between the solution to a quadratic subproblem and the update of

the weight matrix W:

ρ̂d = arg min
ρ̂d
‖ρ̂d − b‖2

2 + γ0‖T (ρ̂d)
√

W‖2
F , (3.15)

W =

[T (ρ̂d)]
∗ [T (ρ̂d)]︸ ︷︷ ︸
R

+ε I


p
2
−1

(3.16)

Here ε is added to stabilize the inverse. We note that
√

W has a similar structure

as the null space matrix D, which is computed in (3.10). Specifically, the columns

of
√

W correspond to the weighted eigen vectors of the Gram matrix R; the weights

being inversely proportional to the eigen values [4]. Thus, (3.15) seeks a signal ρ̂d

such that the projection of T (ρ̂d) onto its null space
√

W is as small as possible. We

use
√

W as the surrogate for the null space matrix D.

3.4.2 Smoothness based exponential parameter estimation

The low rank based approach described above suffers from high computational

complexity. Hence, we propose a computationally efficient alternative to estimate the

vector in the null space of Ts(ρ̂) which yields spatially smooth exponential parameters.

We formulate the recovery of this vector as the following optimization problem:

min
d̂
‖Ts(ρ̂)d̂‖2

2 + µ0‖Cd̂‖2
2 (3.17)
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where C is a diagonal matrix with entries
√

(k2
x + k2

y); (kx, ky) are the kspace co-

ordinates corresponding to the filter coefficients and µ0 is a regularizing parameter.

The regularizer ‖Cd̂‖2
2 = ‖∇d‖2

2, where d[r, n]
F2D↔ d̂[k, n] is the 3-D polynomial cor-

responding to the Fourier coefficients d̂[k, n] and ∇ is the gradient operator. Taking

the gradient of (3.17) with respect to d̂ and setting it to zero, we obtain:

[
[Ts(ρ̂)]∗[Ts(ρ̂)] + µ0C

∗C︸ ︷︷ ︸
G

]
d̂ = 0 (3.18)

The solution to (3.18) is the eigen vector corresponding to the minimum eigen value of

the matrix G. This scheme is very computationally efficient since d̂ can be estimated

from a single eigen decomposition of G.

The above approach provides a single temporal filter at each pixel, assuming the

field map to be smooth. It is also robust to noise and other sources of errors. This

approach is significantly faster than the approach described in Section 3.4.1. However,

it could be sub-optimal due to the potential degradation in cases with abrupt field

map variations at the air-tissue interfaces.

3.4.3 Signal subspace based recovery

Once the nullspace vector d is estimated using one of the approaches described

in Section 3.4.1 or 3.4.2, we can estimate the exponential parameter β[r] and use

it to recover the time series by solving (3.12). First, we compute the 3D function

corresponding to d̂ as :

µ = F∗P∗Λd̂ (3.19)

where µ =
[
µ(1),µ(2)

]
, P∗Λ represents the zero padding operation outside the filter

support Λ and F∗ is the inverse discrete Fourier transform matrix. After normalizing,
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µ =
[
1, µ̄(2)

]
. The exponential parameter β can then be computed as:

β(r) = (−µ̄(2)(r))
1
k (3.20)

where k ∈ Z and k∆T is the delay in the readout of the second EPI dataset. Once

β is estimated, we can recover the time series by solving the following regularized

problem:

α∗ = arg min
α
‖A (α(r) β(r)n)− b‖2

2 + ε0‖α‖2
2 (3.21)

where ε0 is a parameter that we set to a small value to prevent solutions with very

high pixel intensities. We note that (3.21) is equivalent to (3.12) when ε0 = 0.

(3.21) can be efficiently solved using a few iterations of the CG algorithm without

the evaluation and storage of the Toeplitz matrix T (ρ̂). When data from multiple

channels are available, we solve (3.21) for each coil independently. The final solution

α is obtained by a sum-of-squares combination of individual coil solutions.

3.4.4 Algorithm summary

1. Construct the matrix Ts(ρ̂) from the EPI measurements.

2. Estimate the null space vector using the proposed low rank or smoothness ap-

proach. Use (3.20) to estimate the exponential parameter β.

3. Solve (3.21) to recover the distortion-free image.

3.5 Results

We validate the proposed approach using simulations performed on a numerical

brain phantom, and MRI experiments performed on phantom and human data. The

human data was collected in accordance with the Institutional Review Board of the

University of Iowa. MRI experiments were performed on a GE 3T scanner with a

32-channel head coil using a gradient-echo EPI (GRE-EPI) acquisition. Data from
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the spherical phantom and two healthy volunteers were acquired, following shimming.

The scan parameters used for the phantom and the human experiments were: FOV

= 256 mm, matrix size = 64×64, slice thickness = 3.6 mm, minimum TE = 30 ms,

TR = 3100 ms for a total of 40 slices (77.5 ms per slice). For the above GRE-EPI, the

time taken to acquire one k-space line (∆T ) was 0.636 ms. For each experiment, we

acquired two sets of GRE-EPI data such that the readout of the second data set was

delayed by 4∆T . For comparison purposes, we collected a four-shot GRE-EPI data,

where we expect to see lower distortions, and a high spatial resolution anatomical

image. The anatomical image is only used for qualitative comparisons with images

from other methods. It looks different from the other images, since it has a different

contrast mechanism.

While solving (3.21) for all our experiments, we formed the time-segmented k-

space volume by assuming one line of k-space per time segment (k = 1). This resulted

in a total of sixty eight time frames (M = 68).

3.5.1 Methods for comparison

For the numerical phantom experiments, we compare the proposed approach to

the following methods:

3.5.1.1 Iterative smoothness-based approach

The model based iterative smoothness method proposed in [74] is conceptually

similar to the proposed framework. We obtained the codes from the authors and

adapted the cost function as follows:

min
ρ0,ω,R∗

2

‖A(ρ)− b‖2
F + λ1‖D(ω)‖2

2 + λ2‖D(R∗2)‖2
2 + λ3‖ρ0‖2

2 (3.22)

where we have modified the data consistency term to be consistent with our signal

model and also incorporated the effects of R∗2, to perform valid comparisons. λ1, λ2
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and λ3 are the regularization parameters and D is a finite difference operator, which

is used to enforce smoothness on the field map and the R∗2 map. To solve (3.22), we

employ an alternating minimization algorithm, which iterates between the updates

of the distortion-free image ρ0, ω and R∗2 till convergence. We employ a gradient

descent algorithm to solve the field map and R∗2 map sub-problems. Using these

updates, we update ρ0 by solving the least squares problem in (3.21).

3.5.1.2 Harmonic retrieval method (HR)

In the HR method [50], two-echo EPI data is acquired using a specialized sequence

and field map compensation is done on every column of the image independently using

a least squares based Prony’s method. As their acquisition scheme is different from

ours, the simulated data with artifacts was generated using the model in [50]. The

codes to simulate the Fourier data and reconstruct the image were downloaded from

the author’s website.

3.5.1.3 Direct Toeplitz method

Using all the null space vectors, we solve the unconstrained problem corresponding

to (3.11) to recover the kspace volume. Note that in this approach, we have to

explicitly form and store the Toeplitz matrix T (ρ̂). Since the null space vectors are

estimated from two EPI datasets with echo times separated by 4∆T , we form a k

space volume such that the delay (T ) between two time frames is 4∆T . Hence in

(3.11), the kspace volume consists of seventeen segments with only four kspace lines

per segment.

3.5.1.4 Direct method

Here, the distortion maps are obtained from the pixel-wise ratio of the uncorrected

images corresponding to the two EPI acquistions. Specifically, the field and R∗2 maps

are computed from the magnitude and phase respectively of the ratio image. To
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reduce noise, we also smoothed the maps using a Gaussian filter with a standard

deviation of two. Using the smoothed maps, we recovered the distortion-free image

by solving (3.21).

3.5.2 Simulation

We demonstrate the performance of the proposed method in correcting the arti-

facts due to inhomogeneities on a numerical brain phantom [16]. For this purpose,

we introduced intensity losses and geometric distortions on the brain phantom shown

in (a) in Fig. 3.3 A, using the fieldmap and R∗2 map (shown in (a) in B and C re-

spectively). The simulated distorted image is shown in (b) in Fig. 3.3 A. To demon-

strate the proposed approaches, we created two sets of image series and generated

the Fourier data corresponding to them. The exponential decay of the Fourier data

corresponding to the second image series was delayed by 4∆T along the temporal

dimension; ∆T = 0.636 ms. Finally, we combined the Fourier data corresponding to

both the image series to form a k-space volume using (3.6) and (3.7). We compare

the reconstructions, maps and the error images corresponding to the proposed low

rank and smoothness methods with the techniques in Section 3.5.1.

Compared to the proposed approaches, the direct Toeplitz method is computa-

tionally more expensive and results in a reconstruction with more errors. This can

be attributed to the fact that the data is time-segmented with four kspace lines per

segment. The assumption that the phase is constant during this time period might

not be very accurate. Also, no field and R∗2 maps have been displayed for this method.

This is because there are multiple null space vectors for this method and it is not

possible to obtain a single map from them.We observe that the geometric distortions

have been reduced to a great extent in the reconstructions corresponding to both the

proposed and iterative approaches. We also observe that the field maps corresponding

to the proposed and the iterative method closely match the ground truth. However,

the R∗2 map for the iterative approach has a lot more errors than those obtained
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using the proposed methods. This results in intensity losses in some regions of the

reconstructed image, which are pointed by the red arrows in (e) in Fig. 3.3 A. From

the error maps displayed in (j) in Fig. 3.3 B and C, we can infer that the field map

and R∗2 maps estimated using the HR method have a lot of errors and hence results

in an image with artifacts, as pointed by the red arrows. As the data was generated

to simulate a two-echo EPI acquisition, the read out associated was about twice as

long as our read out. Hence, this caused the data to experience more significant R∗2

loss and geometric distortion artifacts. We also note that the reconstruction from

the direct method suffers from artifacts and this can be attributed to poor estimates

of the field map and R∗2 map. We compare the Signal to Error Ratio (SER) and

computation times of different methods in Fig. 3.3 A. They were recorded on a high

performance computing server with a 24 core Xeon processor. We observe that the

run times of the proposed smoothness and low rank approaches are 0.22 s and 41.7 s

respectively. The iterative, HR and direct approaches have a run time of 996 s, 0.82

s and 13 s respectively. The increased run time of the low rank approach is due to

the additional IRLS based optimization step (3.14) for denoising.

3.5.3 Phantom experiment

The effect of the magnetic field inhomogeneities leading to image distortions can

be clearly appreciated in the spherical phantom data in Fig. 3.4, where the straight

gridlines appear curved in the uncorrected EP image. Other regions, where the arti-

facts are quite obvious are pointed by the red arrows. We compare the uncorrected

images and the proposed reconstructions corresponding to a few slices in Fig. 3.4. The

proposed approaches provide reconstructions with reduced distortion levels compara-

ble to that of the multi-shot EPI data. For a particular slice, we show the estimated

field maps using a filter of size 5×5×2 and compare the proposed reconstructions to

a high spatial resolution anatomical scan in Fig. 3.6 (A).
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3.5.4 Validation on human data

We also validate the proposed algorithms on two human datasets. We compare the

uncorrected images and the proposed reconstructions corresponding to a few slices of

both the datasets in Fig. 3.5 (A) and (B). As expected, the severity of the distortions

vary across subjects and brain regions. We observe that the proposed algorithms are

able to correct the distortions effectively in all these regions. Note that there are

some differences between the proposed and the multi-shot reconstructions for human

dataset 2 due to the shorter echo time of the multi-shot data. For a particular slice,

we show the estimated field maps and compare the proposed reconstructions to an

anatomical scan in Fig. 3.6 (B) and (C). We observe that both the low rank and

smoothness based algorithms provide similar reconstructions with minimal artifacts,

when compared to the uncorrected single-shot EPI data. For both the proposed

approaches, a filter size of 7×7×2 was used to recover both the datasets.

3.5.5 Choice of optimization parameters

There are a few tuning parameters associated with the proposed two step al-

gorithm. In all our experiments, they were chosen empirically. Below, we briefly

describe them.

Step1: We have to tune different parameters depending on the approach (low rank

or smoothness) employed to estimate the null space vector. µ0 is associated with the

smoothness approach. It was chosen for a dataset with large field inhomogeneity

distortion and the same value was retained for other datasets. We observed that this

strategy resulted in smooth field maps across the datasets and gave reconstructions

with minimal artifacts. Corresponding to the low rank approach, there are two tuning

parameters namely γ0 and ε for the denoising step. γ0 was chosen such that there

was significant reduction of noise outside the image while preserving the structures

present inside. We observed that the same value gave similar denoising performance

across datasets. ε is a parameter appearing in the update of the weight matrix W
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in (2.18). It ensures the invertibility of W and also the stability of the IRLS based

algorithm. We employ the strategy described in [4] to initialize and vary the value at

every iteration.

Step2: ε0 is associated with the least squares problem in (3.21). We set it to a

small value to prevent solutions with very high pixel intensities and kept it constant

across datasets.

Finally, as the filter size was not known apriori, we also treated it as an optimiza-

tion parameter and chose it empirically to result in an image with minimal distortions.

Specifically, we estimated the filter size for a dataset with large field inhomogeneity

distortion and retained it for other datasets. We observed that this strategy did not

affect the performance of the algorithm and gave good reconstructions for all the

datasets.

We observed that the distortions were quite different between our datasets. Yet,

the same tuning parameters resulted in good performance across datasets. This leads

us to believe that for new datasets, the parameters will be in the same ballpark.

3.6 Discussion and conclusion

We introduced a two step structured low rank algorithm for the calibration-free

compensation of field inhomogeneity artifacts in EPI data. We transformed the

EPI distortion correction to the recovery of an image time series from undersam-

pled Fourier measurements. This enabled us to rely on 3-D annihilation relations in

the Fourier domain, resulting from exponential signal structure and spatial smooth-

ness of the exponential parameters, to recover the dataset from highly undersampled

measurements. We introduced a novel signal subspace based approach to solve the

optimization problem, which resulted in a fast and efficient algorithm.

We validated the proposed methods on MRI phantom and human data and demon-

strated the potential of the proposed approaches in correcting the artifacts. Specifi-

cally, the geometric distortions and intensity losses were significantly reduced in the
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reconstructions from the proposed methods, compared to the uncorrected single-shot

EPI data. The proposed reconstructions were also in agreement with a high spatial

resolution structural scan and a four shot EPI data. Since the proposed approach

requires two EPI datasets, its acquisition time is half that of the four shot EPI ac-

quisition considered in this work. We expect the need for more shots to reduce the

distortions in high-resolution applications, where the proposed algorithm would be

even more desirable. Specifically, the longer acquisition time of multi-shot EPI makes

it more susceptible to motion artefacts.

The validations on the MR phantom and human data also show that the exponen-

tial parameter estimated from smoothness and low rank approaches are very similar,

thus resulting in similar reconstructions. However, we observe that the smoothness

based method is more robust to noise as compared to the low rank approach and does

not require denoising of the measurements prior to the estimation of the null space.

Specifically for the low rank approach, the denoising step was able to get rid of some

pixelation artifacts in the inhomogeneity corrected image. The need for denoising

makes it more computationally expensive than the smoothness based approach. For

numerical simulation experiments, the run times for the smoothness and low rank

approaches were recorded as 0.22 s and 41.7 s respectively.

Our numerical simulations on the brain phantom in Fig. 3.3 also show that the

proposed schemes can provide improved reconstructions compared to the techniques

described in Section 3.5.1. We also show that the direct Toeplitz method is compu-

tationally more intensive than the proposed approach. Specifically, we note that the

proposed smoothness approach takes 0.22 s, while the direct Toeplitz based method

takes 132 s. The large speed up is due to a difference in formulation and few other

factors. Firstly, we observed that the direct Toeplitz method required a large number

of CG iterations (around 200) as compared to the proposed scheme (around 25), in

order to achieve similar reconstruction quality. Secondly, problem (3.21) correspond-
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ing to the proposed approach was solved completely on the GPU. In contrast, the

construction of the Toeplitz matrix and its adjoint for the direct Toeplitz method

were done on the CPU, while the other term in the gradient was computed on the

GPU. Though a more efficient implementation may speed up the direct Toeplitz ap-

proach, we expect that the proposed scheme would still offer a significant speed up

along with memory savings as discussed in Section 3.4.

We note that the R∗2 maps follow anatomical structures more closely than the field

maps which are inherently smooth. By penalizing the roughness of the field map and

R∗2 map equally, the sharp transitions of the R∗2 maps might not be captured. This

problem can be alleviated by penalizing the roughness of the maps differently, which

we plan to pursue in the future.

To compensate for field inhomogeneities, the proposed method requires two EPI

datasets such that the read out of the second dataset is delayed by a few ms. We

note that motion between the scans can cause errors in the field map estimate. To

minimize these errors, we specifically instructed the subjects to stay still during the

acquisition of both the datasets. We also plan to investigate single shot strategies

using spiral-in/spiral out trajectories to minimize this risk.

We note that the reported TR is higher than current practice. This value was

chosen to support the acquisition of the second dataset with different delays (∆T to

16∆T ). This was done to determine the delay and hence the dataset pairs which

gave the best performance. A common TR that supported all of the above delays

was chosen. We also note that the spatial resolution considered in the experiments

is lower than the current practice in fMRI/DTI. The proposed single exponential

model might not be fully valid at low resolutions due to partial volume effects. The

residual distortions resulting from this misfit can be decreased by moving to higher

spatial resolution. In the future, we plan to push the spatial resolution and TR to

the state-of-the-art values.
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The proposed method can be applied in dynamic applications such as fMRI and

diffusion MRI, where it has the potential to compensate for time varying field-map

variations. The two EPI datasets can be acquired in an interleaved fashion. Specif-

ically, the readout of datasets acquired at even time points can be delayed from the

datasets acquired at odd time points by a few ms. A similar acquisition strategy

has been proposed in [13] for dynamic field map distortion correction. The field map

compensation can then be done using every pair of neighboring datasets using our

proposed scheme. We plan to investigate such applications in future.
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Figure 3.3: Simulation experiments on a numerical brain phantom: In A), the simu-
lated image with artifacts due to field inhomogeneity is shown in (b) and the proposed
reconstructions in (c) and (d) are compared with the reconstructions from the direct
Toeplitz method (e), iterative (f), HR (g) and direct method (h). The error between
the ground truth in (a) and the images from different methods is shown in the second
row from (i) to (o). The computation time and SER of the different methods are
also shown in A). The estimated field maps and R∗2 maps from the proposed and the
competing methods are compared with the true maps (shown in (a)) in the first row
of (B) and (C) respectively. The errors in the field and R∗2 maps are shown from (g) to
(k) in the second row of (B) and (C) respectively. Note that the maps corresponding
to the direct Toeplitz method are not shown here. This is because there are several
null space vectors in this case and it is not possible to get a single map. Compared to
the proposed approaches, we note that this method is more computationally intensive
and also results in errors in reconstruction as pointed by the red arrows. We observe
that the field map and the R∗2 maps corresponding to the proposed methods have
much lower errors compared to other methods, and hence results in improved recon-
structions. We observe some artifacts in the competing methods, which are pointed
by the red arrows. Note that the geometric distortion is reduced in the reconstruc-
tion corresponding to the iterative approach. However, the errors in the R∗2 map (red
arrows in (i)) results in intensity losses in the reconstruction, which are pointed by
the red arrows in (f) in A). The scales of both the field map and the R∗2 maps are
displayed in Hz and s−1 respectively.



www.manaraa.com

73

Figure 3.4: Validation of the proposed methods on a spherical MR phantom: A
few reconstructed slices corresponding to the proposed low rank and smoothness
approaches are displayed inside the blue boxes. For comparison, we have also shown
the uncorrected single-shot and multi-shot EP images in the first and fourth rows
respectively. We observe that the field inhomogeneity artifacts are greatly reduced
in the proposed reconstructions; especially the curved grid lines in the uncorrected
EP mages appear straight in the proposed slices. Other artifacts, as pointed by the
red arrows in the uncorrected EP images, are also greatly reduced in the proposed
reconstructions.
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Figure 3.5: Validation of the proposed methods on two human datasets: The proposed
reconstructions from a few slices of the two datasets are highlighted using the blue
boxes in (A) and (B). For comparison, the uncorrected single-shot and multi-shot
EP images are shown in the first and fourth rows respectively. We note that the
distortions are more severe in dataset 2 and the severity varies across different regions
for both the subjects. We observe that the proposed reconstructions have reduced
inhomogeneity artifacts compared to the uncorrected EP images. The distortions are
prevalent in many regions of the uncorrected EP images with the red arrows pointing
to the most obvious regions. Note there are some differences between the proposed
and the multi-shot reconstructions for human dataset 2. This is due to the shorter
echo time of the multi-shot data.
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Figure 3.6: Comparison of the proposed reconstructions with a high spatial reso-
lution anatomical scan: For a particular slice, the reconstructions and field maps
corresponding to spherical MR phantom, human dataset 1 and dataset 2 are shown
in (A), (B) and (C) respectively. In each case, the proposed reconstructions in (ii) and
(iii) are compared with a anatomical image in (iv). The uncorrected single-shot and
multi-shot EP images are also shown in (i) and (v) respectively. The field maps (Hz)
estimated using the proposed approaches are shown in (vi) and (vii). With the aid
of the red and green contours, the improvements offered by the proposed approaches
can be clearly appreciated.
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CHAPTER 4
FIELD MAP COMPENSATION FOR NON-CARTESIAN

TRAJECTORIES: DEMONSTRATING ON ROSETTE DATA

4.1 Introduction

MR acquisition schemes with long read outs are often susceptible to off-resonance

related artifacts, which arise due to the inhomogeneities in the main magnetic field.

These off-resonance artifacts manifest differently in images acquired using Cartesian

and non-Cartesian trajectories. For instance in Cartesian EPI where data is acquired

using a rectilinear trajectory, the images are affected by geometric distortion arti-

facts. In non-Cartesian trajectories such as spiral and rosette, there is blurring and

intensity losses respectively in images. In the previous chapter, we introduced a novel

structured low rank method for correcting field inhomogeneity artifacts in EPI. We

showed that images recovered using the proposed method had fewer errors and distor-

tion levels comparable to that of a multi-shot EP image. In this chapter, we extend

the structured low rank framework to correct for inhomogeneity related artifacts in

non-Cartesian trajectories. Specifically we demonstrate the algorithm for artifact

correction on data acquired using Rosette trajectories.

Rosette trajectory was first proposed in [36] and was re-introduced in [52] for

spectrally selective imaging. It has been applied in many applications such as func-

tional MRI (fMRI), spectroscopy and fat/water imaging. The function generating the

trajectory consists of a rapid one dimensional oscillating sinusoid, which is modulated

by a complex exponential. The trajectory goes through the origin and intersects it-

self many times. This results in significant de-phasing throughout the Fourier space,

leading to loss of image intensity.

To correct these inhomogeneity related intensity losses, we employ the time seg-

mentation approach [53] and reformulate the field map compensation problem as a

recovery of time series of images from highly undersampled measurements. We adopt

the structured low rank framework and formulate the recovery of kspace volume as a
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structured low rank optimization problem in the Fourier domain. The trajectory was

designed such that the petals of the Rosette trajectory don’t overlap and this ensures

the incoherence of the undersampling across the time segments/frames of the volume.

This also enables the application of compressed sensing type algorithms to recover the

missing entries of the volume. For this reason, we employ the IRLS based algorithm,

which was introduced in chapter 2, to solve the optimization problem. We also intro-

duce similar approximations, which eliminates the need to store the Toeplitz matrix

resulting in a memory efficient algorithm. We demonstrate the proposed method on a

64×64 and 128×128 MR phantom data and show that the proposed reconstructions

have fewer errors and artifacts compared to those obtained using conjugate gradient

(cg) based Tikhonov reconstructions.

4.2 Rosette trajectory

The rosette trajectory can be described by a rapidly oscillating sinusoidal function,

which is also slowly rotating in the kx − ky plane [52]. It has the following form:

k(t) = kmax sin(2πf1t)e
j2πf2t (4.1)

where kmax is the maximum extent to which the Fourier space is covered, f1 is the fre-

quency of rapid oscillation of the sinusoid and f2 is the frequency of the slow rotation.

Typically the frequency values are chosen such that the petals of the trajectory don’t

completely overlap. The gradient waveforms which generate the rosette trajectory

according to (4.1) are given by:

G(t) =
2π

γ

d

dt
k(t)

=
2π

γ
kmax((2πf1 + 2πf2)ej(2πf1+2πf2)t + (2πf1 − 2πf2)e−j(2πf1−2πf2)t)

(4.2)
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Figure 4.1: Plot of the gradient waveforms and the rosette trajectory generated using
them: The data is acquired for 10 ms using the rosette trajectory. The maximum
gradient amplitude and slew rate was assumed to be 25 mT/m and 115 T/m/s re-
spectively.

where γ = 2.675.108 rad/(s.T) is the gyromagnetic ratio for protons. Refer Fig.

4.1 which shows the Rosette trajectory and the gradient forms generating it. While

designing k space trajectories in MRI, we should always make sure that the maximum

value of gradient amplitude and the maximum rate of change of gradient amplitude

(slew rate) do not exceed values specified by the vendors. These two parameters serve

as constraints and help us in designing the values of the frequencies f1 and f2. The

maximum value of gradient amplitude and the slew rate can be computed as:

|G| ≤ 2π

γ
kmaxω1

|S| ≤ 2π

γ
kmax(ω

2
1 + ω2

2)

(4.3)
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Figure 4.2: Reformulation of the artifact correction problem as the recovery of image
time series: Shown in (A) are the sampling trajectory on which the data is acquired
and the image corresponding to it. The data acquisition window is divided into
multiple short time segments and the sampling trajectories corresponding to the dif-
ferent segments are shown in (B). Note that the trajectories corresponding to the
different segments don’t overlap. This incoherence between the frames enables the
application of compressed sensing based algorithms to recover the image time series
from undersampled measurements. Upon recovery, the first image corresponds to the
distortion-free image.

where ω1 = 2πf1 and ω2 = 2πf2.

4.3 Proposed approach

When the read out associated with the Rosette acquisition is long, the images

are corrupted by off-resonance related artifacts which manifest as intensity losses.

To correct these artifacts, we extend the proposed ideas and framework for the EPI

setting to non-Cartesian Rosette setting. To make this chapter self-contained we

briefly summarize the main ideas below.
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4.3.1 Time segmentation and reformulation as time series recovery

To correct the inhomogeneity related artifacts, we adopt the time segmentation

approach and reformulate the artifact correction problem into a recovery of time

series of images from undersampled measurements. Upon recovery, the distortion

free image will correspond to the first image. An illustration of the reformulation

process is shown in Fig. 4.2. We assume the size of each image in the time series is

N × N . With this discretization, the measurements at tn = nT ;n = 1, 2, . . .M , are

specified by:

bn =

∫
ρ0(r)e−γ(r)nT︸ ︷︷ ︸

ρn(r)

e−j2πkn·rdr + ηn

= An(ρn) + ηn

(4.4)

Here ρn is the image corresponding to tn = nT , while bn is its Fourier measurement.

The operator An is a linear acquisition operator corresponding to the nth segment.

4.3.2 Annihilation relation and structured matrix prior

We assume a single exponential signal model, defined in chapter 3, at every pixel

location. We exploit the linear predictability of the exponential signal at every pixel

location along with the smoothness of the parameters to derive a 3D annihilation

relation in the Fourier domain:

ρ̂[k, n]⊗ d̂[k, n] = 0. (4.5)

where ρ[r, n] and d[r, n] are the 2-D Fourier coefficients of ρ[k, n] and d[k, n] respec-

tively, while ⊗ denotes 3-D convolution. We assume that the inhomogeneity map to

be smooth; this implies d̂[k, n] is a bandlimited 3-D FIR filter. The spatial bandwidth

controls the spatial smoothness of the parameters, while its temporal bandwidth is

two. When the filter dimensions are over-estimated, there will be multiple filters
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d̂1[k, n], .., d̂P [k, n] that satisfy (4.5) [4, 60].

Expressing the above annihilation relations in compact matrix notation, we obtain

T (ρ̂)
[
d̂1, . . . , d̂P

]
= 0 (4.6)

where T (ρ̂) is a multi-fold Toeplitz matrix formed from the Fourier samples. From

(4.6), we can infer that T (ρ̂) is low rank.

4.3.3 Structured low rank optimization problem

We exploit the low rank property of the Toeplitz matrix to recover the time series

of images from undersampled measurements. For this purpose, we pose the recovery

as the following optimization problem:

ρ̂? = arg min
ρ̂
‖T (ρ̂)‖p +

µ

2
‖A(ρ̂)− b‖2

2 (4.7)

where µ is a regularization parameter and ‖.‖p is the Schatten p norm, which is

defined in chapter 1.

4.3.4 Optimization algorithm

We note that the sampling pattern across the frames is highly incoherent. We

made sure of this by designing the rosette trajectory in such a way that its petals

didn’t overlap. As incoherence in the measurements between the frames favors com-

pressed sensing based algorithms, we apply an iterative strategy similar to the one

applied to the MR parameter mapping problem in chapter 2. Specifically we employ

an IRLS based algorithm, which alternates between the update of a weight matrix

and a least squares solution, to solve (4.7).

As the size of the filter is chosen to be small, the update of the weight matrix is

done according to (2.18). However, there is a huge computational burden associated

with the least squares problem (2.17). To address this issue we introduce approxima-
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Figure 4.3: Multishot data for reference: In the top row, data corresponding to
two shots are shown. The scan parameters for the two datasets were the same;
however the trajectory of the second dataset was rotated by golden angle. Upon time
segmentation, data from both the shots are combined to form the measurements of
each segment. This is shown in the middle row. In the bottom row, the measurements
in one segment are formed by combining data from 72 shots. The image corresponding
to this segment is treated as a reference.

tions similar to those introduced in chapter (2). Specifically, we approximate the 3D

linear convolution as a series of 2D circular convolutions along the spatial dimension

and a linear convolution along time. These approximations enable us to solve the

least squares problem efficiently using fast Fourier transforms.

4.4 Results

4.4.1 Data acquisition

We used the platform provided by GE’s Multi Nuclear Spin (MNS) package to

design the rosette trajectory. The package consists of a set of matlab codes, which

can be modified to design different kinds of k space trajectories such as rectilinear,

rosette, spiral etc.
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The 3T MR scanner at the University of Iowa is equipped with gradient coils with

maximum gradient amplitude (max grad) and slew rate (max slew) of 44 mT/m and

200 T/m/s respectively. We designed the values of f1 and f2 such that max grad and

max slew in (4.3) were assumed to be 25 mT/m and 115 T/m/s respectively. Heuris-

tically, we set f2 = f1
α

, where α = 1.9416, in (4.3) and estimated the frequencies. The

gradient waveforms were designed to generate a rosette trajectory corresponding to

the estimated frequencies. Empirically, we observed that this resulted in a trajectory

with non-overlapping petals. We also observed that there was uniform coverage of

kspace in each frame of the volume, generated using time segmentation approach.

Using the above designed trajectory, we acquired a phantom data on a GE 3T

scanner with a 32 channel head coil. The scan parameters used for the phantom were

as follows: FOV = 256 mm, matrix size of dataset 1 = 64x64, matrix size of dataset

2 = 128x128, slice thickness = 3.6 mm, TR = 100 ms.

In order to obtain a ground truth for our experiments, we acquired multiple rosette

datasets, herein referred to as shots, with the same scan parameters; the trajectory

of each dataset was rotated by a multiple of golden angle. We acquired 36 shots

and 72 shots corresponding to the 64 × 64 and 128 × 128 datasets respectively. In

order to generate the volume, we divided the acquisition window into 40 segments

such that each segment contained data for 2.5 ms. Fully sampled data for each

segment can be obtained by combining the measurements from different rotations.

An illustraton of the formation of the multishot data is shown in Fig. 4.3. The

coil maps were estimated from the data itself using the ESPIRIT algorithm [39]. The

images corresponding to each segment were obtained by solving a CG based Tikhonov

reconstruction algorithm. The first image of the series was considered as the ground

truth.
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Figure 4.4: Demonstration of the proposed method on a low resolution 64×64 dataset:
In the top row, the sampling trajectory for 1 segment corresponding to 36 shots, 12
shots and 1 shot are shown. The reconstructions from different methods are shown
in the bottom row. The proposed reconstruction in d) is compared with the ground
truth in a) and Tikhonov reconstructions on 12 shot and 1 shot data in b) and c)
respectively. We can clearly appreciate the quality of the proposed reconstruction
over the 1 shot Tikhonov reconstruction.

4.4.2 Phantom experiment

We validate the proposed approach on both the MR phantom datasets. We il-

lustrate the results on a low resolution 64 × 64 dataset in Fig. 4.4. The proposed

method was applied on 1 shot data and the reconstruction is shown in d). This is

compared to the ground truth in a), Tikhonov reconstruction of 12 shot and 1 shot

in b) and c) respectively. We observe that the Tikhnov (1 shot) reconstruction has

a lot of artifacts and intensity losses, which are significantly reduced in the proposed

reconstruction. We note that the quality of the Tikhnonov reconstruction improves

when the number of shots is increased to 12. It can be observed from the figure that

the image qualities of both the proposed method and the 12 shot reconstruction are

similar.
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Figure 4.5: Demonstration of the proposed method on a high resolution 128 × 128
dataset: In the top row, the sampling trajectory for 1 segment corresponding to
72 shots, 15 shots, 3 shots, 2 shots and 1 shot are shown. The reconstructions
from different methods are shown in the bottom row. The proposed reconstructions
on 3 shots, 2 shots and 1 shot are shown in c), e) and g) respectively. They are
compared to the ground truth in a) and Tikhonov reconstructions on 15 shot, 3 shot,
2 shot and 1 shot data in b), d), f) and h) respectively. We can clearly observe that
the proposed method on 2 and 3 shots provides improved reconstructions over the
Tikhonov reconstructions. However the proposed reconstruction corresponding to 1
shot has artifacts and errors, which are pointed by the red arrows in g).

The results corresponding to the high resolution 128 data are shown in Fig. 4.5.

The proposed method was applied on 3 shots, 2 shots and 1 shot data and the

reconstructions are shown in c), e) and g) respectively. They are compared to the

ground truth in a) and Tikhonov reconstructions applied to 15 shots, 3 shots, 2 shots

and 1 shot, shown in b), d), f) and h) respectively. We observe that the Tikhonov

reconstructions corresponding to 1, 2 and 3 shots have a lot of intensity losses and

artifacts, which are reduced in the 15 shot reconstruction. However, the proposed

method on 2 shot and 3 shot data provides improved reconstructions over the 15 shot

Tikhonov reconstruction. On 1 shot data, where the number of samples per frame is

very low, the proposed reconstruction has artifacts and intensity losses as pointed by

the red arrows in g).
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4.5 Conclusion

In chapter 3, we introduced a structured low rank method to correct the field

inhomogeneity related artifacts in the EP image. Here, we extend this framework to

correct the off-resonance related intensity artifacts and losses occuring in images ac-

quired using the rosette trajectory. We designed the rosette trajectory on the platform

provided by GE’s MNS package. We validated the algorithm on two MR phantom

datasets acquired using our designed trajectory. We compare the proposed recon-

structions against the ground truth obtained from a large number of shots (36 for

low resolution data and 72 for high resolution data). We observed that the proposed

method provides images of similar quality as the ground truth from much fewer shots

(1 shot for low resolution data and 2 to 3 shots for high resolution data). For the

Tikhonov reconstructions to have similar image quality as the proposed reconstruc-

tions, the number of shots required are 12 and 15 shots for low resolution and high

resolution data respectively.
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CHAPTER 5
ACCELERATED DYNAMIC MRI

5.1 Introduction

Obtaining high spatial & temporal resolution is challenging in dynamic MRI,

mainly due to the slow nature of acquisition. A common approach to speed up the

acquisition is to acquire undersampled Fourier data and to regularize the recovery

problem using appropriate priors. Common regularization penalties include `1 spar-

sity prior in the Fourier/wavelet domain and smoothness priors (e.g. total variation

regularization).

Recently, structured low rank matrix priors are emerging as powerful alternatives

for classical `1 regularization [17, 27, 56, 58]. For example, we have modeled a 2-D

image as a piecewise smooth signal, whose partial derivatives are localized to zero-

crossings of a band limited trigonometric polynomial [56, 58]; this work is inspired

by [62]. We have shown that such a signal can be annihilated by a large set of

finite impulse response filters in the Fourier domain. These annihilation relations

imply that a matrix with convolutional structure derived from the uniform Fourier

samples of the signal is low-rank. We have exploited this property to recover the

image from uniform [59] and non-uniform samples [56]. Since these methods can

exploit the additional structure in many multidimensional problems (e.g. smoothness

of the edges), on top of sparsity, they are demonstrated to yield better reconstruction

performance than classical total variation methods. These methods are generalization

of classical 1-D FRI methods [35,78] to the multidimensional setting with non-uniform

sampling.

Despite improved performance, structured low rank methods suffer from high

memory demand and computational complexity, both resulting from the lifting of the

original 2-D problem to a dense high-dimensional structured matrix. Since the dimen-

sion of the matrix is atleast two to three orders of magnitude greater than the size of
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the original data, it results in computationally expensive algorithms. Various methods

have been explored to make the computational complexity manageable. For example,

greedy multi-scale approximations to sequentially recover the image [27] and factor-

ization of the matrix to two low-dimensional matrices have been explored [17, 27].

Despite these approximations, it is still challenging to extend the above scheme to

three dimensions and beyond. Current methods recover 2-D slices of the 3D datasets

independently [27], which is suboptimal and requires Cartesian undersampling; this

approach is not as efficient as more general non-Cartesian acquisition schemes. An-

other challenge with most of the current methods is that they are only designed

for one derivative operator. [17, 27]. When multiple derivative operators are desired

(e.g. directional derivatives), the problems are solved in a sequential fashion; the

data recovered using one weighting is then used to recover the image with the other

weighting.

Recently, we have introduced a fast and memory efficient structured low-rank

matrix recovery algorithm called Generic Iteratively Reweighted Annihilating Filter

(GIRAF) [59]. This approach works in the unlifted domain & exploits the convolu-

tional structure of the structured matrix using Fast Fourier Transforms (FFT), which

quite significantly reduces the computational complexity and memory demand of the

algorithm. In addition, the algorithm is also general enough to handle arbitrary

number of k-space weightings at the same time. In this work, we extend the GIRAF

algorithm to recover signals that can be modeled as piecewise smooth functions in

three dimensions. We demonstrate the improvement offered by this algorithm on

breath held cine data over spatio-temporal total variation (TV) & temporal Fourier

sparsity regularized reconstruction schemes.
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5.2 Theory

Consider the general class of piecewise smooth functions g of degree n in d dimen-

sions:

g(r) =
N∑
i=1

gi(r)χΩi
(r), ∀r = (x, y) ∈ [0, 1]d, (5.1)

where χΩi
is a characteristic function of the region Ωi and gi are smooth polynomial

functions of degree at most n. We assume that the edge set ∂Ω =
⋃N
i=1 ∂Ωi coincides

with the zero level sets of a d dimensional bandlimited function:

µ(r) =
∑
k∈∆

c[k]ej2π〈k,r〉, ∀r = (x, y) ∈ [0, 1]d (5.2)

where c[k] ∈ C are the Fourier coefficients of µ and ∆ is any finite subset of Z2. We

have shown that such signals satisfy

(
∂n1
x1
. . . ∂nd

xd
g
)
· φ = 0; ∀ n1 + . . . nd = n+ 1, (5.3)

where φ = µ · η is any function bandlimited to Λ1 ⊇ ∆, with a factor µ. The above

conditions (5.3) translates into a convolution relation in the Fourier domain.

(
(jω1)n1 . . . (jωd)

nd ĝ

)
? c = 0; ∀ n1 + . . .+ nd = n+ 1 (5.4)

We consider the recovery of the the Fourier coefficients on a rectangular region Γ ⊂ Zd.

When n = 0 in (5.3), we obtain a piecewise constant signal model with conditions

similar to the assumptions in classical total variation regularization. The annihilation

relations in this case can be compactly written in matrix form as

T (ĝ)h =


T1(ĝ)

...

Td(ĝ)

h = 0 (5.5)
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Here, Ti(ĝ) ∈ C|Λ2|×|Λ1| is a Toeplitz/Hankel matrix whose entries are derived from

jωiĝ; Ti(ĝ)h corresponds to the convolution of jωiĝ with h. Here, h
F↔ φ is a d

dimensional filter, supported in Λ1. We have shown that the dimension of the space

of filters h that satisfy (5.5) is given by the size of the set Λ1|∆ — the valid shifts of

the set ∆ within Λ1. Λ2 ∈ Γ indicates the set of indices over which the convolutions

between the samples of ĝ and h are valid. See Fig. 5.1 for an illustration of the

structure of the lifted matrix T (ĝ). Since the annihilation conditions are satisfied for

filters h that live in a large subspace, we can conclude that T (ĝ) is low rank. We use

this property to recover ĝ from non-uniform samples.

5.3 Proposed formulation

5.3.1 Measurement model

Let G̃ ∈ CP×T denote the Casoratti matrix structure of the dynamic MRI dataset,

where each column G̃i represents a vectorized image at a time point ti. We consider

the recovery of the 3-D discrete Fourier coefficients of G̃, denoted by G. The Fourier

measurements b can be modeled as:

b = SFtG + η; (5.6)

where S and η are the sampling matrix and zero mean white Gaussian noise vector

respectively. Ft is the 1-D discrete inverse Fourier transform (DFT) matrix along the

time direction. (5.6) can be compactly written as

b = A(G) + η (5.7)

where A is the measurement operator.
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Figure 5.1: Illustration of the lifted matrix T (G): The rows of the matrix are cube
shape neighborhoods of the weighted Fourier samples corresponding to the partial
derivatives. We use the structure of the low-rank matrix to recover it from few
measurements as in (5.9).

5.3.2 Problem formulation

We assume that the time series of MR images can be modeled as three dimensional

piecewise constant functions and consider its recovery from few Fourier measurements.

We formulate the problem in the Fourier domain and pose the recovery of G as the

solution to the following structured low rank matrix completion problem.

min
G

rank[T (G)] s.t b = A(G) + η (5.8)

Here G is the data to be recovered. T (G) ∈ CM×N is a structured Toeplitz matrix in

the lifted domain. Since (5.8) is NP hard, we relax the rank function with a Schatten

p(0 ≤ p ≤ 1) norm:

G? = arg min
G
‖T (G)‖p +

λ

2
‖A(G)− b‖2

2 (5.9)
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where λ is a regularization parameter. Here, ‖X‖p is the Schatten p norm, defined

as ‖X‖p := 1
p
Tr[(X∗X)

p
2 ] = 1

p

∑
i σ

p
i , where σi are the singular values of X. p = 1

results in a convex nuclear norm penalty and when (0 ≤ p < 1), the Schatten norm

is non-convex. When p→ 0, ‖X‖0 :=
∑

i log σi.

Note that we lift the original problem involving a 3-D signal to a large matrix

T (G), whose number of rows is around three times the total number of pixels in

the 3-D volume. The number of columns is equal to the size of the filter. The

explicit use of such a matrix requires a lot of memory for storage and also increases

the computational complexity of the problem. Even for a data set of dimension

128 × 128 × 15 and filter size of 21 × 21 × 3, the memory demand is 1323 times

the memory needed to store the original signal, which makes the application of the

scheme to even modest sized datasets intractable.

5.4 Optimization algorithm

We use an iterative re-weighted least squares (IRLS) algorithm [47] to solve (5.9),

which relies on the property ‖X‖p = ‖XH
1
2‖2

F , where H = (X∗X)
p
2
−1. Setting

X = T (G), we obtain the iterative algorithm that alternates between the following

steps:

Hn = [T (Gn−1)∗T (Gn−1) + εnI]
p
2
−1 (5.10)

Gn = arg min
G
‖T (G)H

1
2
n‖2

F +
λ

2
‖A(G)− b‖2

2 (5.11)

where εn → 0 is added to stabilize the inverse. We now show how the above steps

can be modified to avoid the explicit evaluation and storage of the large lifted matrix

T (G).

Update of Gn:
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Figure 5.2: Illustration of the direct evaluation of T (G)∗T (G) that does not require
the lifting. This direct computation, as well as the update step (5.14) that does not
require the lifted matrix, results in the fast and memory efficient algorithm for (5.9).

Denoting H = [h1, ..,hN ], we rewrite (2.17) as

G∗ = arg min
G

1

2

N∑
i=1

‖T (G)hi‖2
F +

λ

2
‖A(G)− b‖2

2 (5.12)

By exploiting the structure of T (G) and from the commutative property of convolu-

tion we have,

T (G)hi = PΛ2(Q(G) ∗ hi) = PΛ2(hi ∗ Q(G)) = PCiQ(G) (5.13)

Here, ∗ denotes 3-D convolution. Q is a linear operator specified byQ =
[
Q∗x,Q∗y, αQ∗z

]∗
.

Here, Q(G) represents element wise multiplication of G by Fourier derivatives j2πkx,

j2πky and j2πkz where k = (kx, ky, kz). Ci represents the 3-D linear convolution by

hi. PΛ2 is the projection of the convolution onto a valid k space index set Λ2 and is

represented by the matrix P.

We approximate Ci by a 3-D circular convolution by hi, which is valid if the

convolution grid is sufficiently large. This allows us to evaluate Ci as FDiF
∗, where

F is the 3-D DFT matrix and Di is a diagonal matrix corresponding to the 3-D

inverse DFT of hi. We also assume P∗P ≈ I, which is valid if the projection set Λ2

is large compared to the filter size. Substituting (5.13) in (5.12) and then taking the
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Figure 5.3: Comparison of the proposed scheme (single weighting and multiple weight-
ing) with temporal Fourier sparsity and spatio-temporal TV methods at an acceler-
ation factor of four (top row) and seven (bottom Row).

gradient, we obtain

Q∗F
(

N∑
i=1

D∗iDi

)
︸ ︷︷ ︸

D(µ)

F∗Q+ λ A∗A


︸ ︷︷ ︸

R

G = λ A∗b (5.14)
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where D(µ) is a diagonal matrix with entries

µ(r) =
N∑
i=1

|µi(r)|2, ∀(r) ∈ [0, 1]3 (5.15)

Here, µi(r) is a trigonometric polynomial corresponding to the inverse fourier trans-

form of hi. With these approximations, forming matrix vector products with R only

requires 2 FFT’s after precomputing µ .

Update of µ(r):

Using the convoution relation mentioned in (5.13), the correlation matrix R =

T (G)∗T (G) can be computed as

R ≈ PΛ1 [C(Q(G))∗C(Q(G))]P∗Λ1
(5.16)

where PΛ1 is the projection onto the set Λ1, C is applied to each block of Q(G) and

represents circular convolution. By expressing C in terms of the DFT matrix F, we

can simplify (5.16) further and obtain R ≈ PΛ1 [FDF∗]P ∗Λ1
where D is a diagonal ma-

trix whose entries correspond to |∇|2 :=
(
|∂G̃
∂x
|2 + |∂G̃

∂y
|2 + |∂G̃

∂z
|2
)

. Hence the entries

of R are obtained from the Fourier coefficients of |∇|2; specifically every row of R is

obtained by vectorizing a brick shaped region of size equal to the dimensions of the

filter from the black cuboid region of dimension twice the size of the filter. See Fig.

5.2 which depicts the construction of R.

Next the weight matrix H can be efficiently computed from the eigen decompo-

sition of R. Let (V,Λ) be the eigen decomposition of T (G)∗T (G), where V is the

orthogonal basis of eigen vectors vi and Λ is a diagonal matrix containing the eigen

values λi. Substituting the eigen decomposition in (2.18) and simplifying further we

obtain,

H = [V(Λ + εI)V∗]
p
2
−1 = V(Λ + εI)

p
2
−1V∗.
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Hence, one choice of the matrix square root H
1
2 is

H
1
2 = V(Λ + εI)

p
4
− 1

2 = [α
1
2
1 v1, . . . , α

1
2
NvN ].

where αi = (λi + ε)
p
2
−1. The spatial domain trigonometric polynomial µi and vi are

related as µi = α
1
2
i γi(r) where γi(r) is the inverse fourier transform of the eigen vector

vi. Hence using this relation, the SOS polynomial is updated as

µ(r) =
N∑
i=1

αi|γi(r)|2, ∀(r) ∈ [0, 1]3 (5.17)

which can be efficiently computed using N FFT’s. Note that the weights αi are only

high for vectors vi close to the null space.

5.5 Results

In Fig 5.3 , we compare the recovery of the proposed method (single weighting

and multiple weighting) with the spatio-temporal TV (S-TV) and temporal Fourier

Sparsity (FS) regularized reconstruction methods on a Breath Held Cine Data of

dimension (224×256×16×5) (coil compressed) at an acceleration factor of four and

seven respectively. The data was acquired using a SSFP sequence using the following

parameters: TE/TR= 2.0/4.1 ms and flip angle=45◦. For the proposed method, a

filter size of (21× 21× 3) was used in the recovery.

Q is defined as
√

(jωx)2 + (jωy)2 + (αjωz)
2 for the proposed method with single

kspace weighting. As this is an isotropic operator, at an acceleration factor of seven,

it results in a recovery with some edges blurred, compared to the proposed method

with multiple weightings and TV. The reconstructions from the proposed method

with multiple weightings are more accurate with a lot of details faithfully captured.

Specifically, the errors corresponding to it are scattered as opposed to being con-

centrated along the edges, which is the case with TV and Fourier sparsity based

methods.
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5.6 Conclusion

We introduced a fast & memory efficient algorithm to recover piecewise smooth

three dimensional signals from few of their measurements. The algorithm is similar

in concept to iterative reweighted algorithm for total variation regularization, with

the exception that the weights are derived using a novel Fourier domain strategy

involving singular value decomposition. The ability of the scheme to additionally

regularize the smoothness of the edges enables it to provide improved results over

total variation regularization. The comparison of the proposed scheme against state

of the art methods in the context of cine MRI demonstrates its ability to provide

more accurate reconstructions with better edge details.
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CHAPTER 6
SUMMARY AND FUTURE DIRECTIONS

6.1 Summary

In this thesis, we have studied the problem of recovering a series of images, in

which the temporal profile at every pixel follows an exponential curve, from very

few Fourier measurements. We exploit the exponential signal at every pixel location

along with the smooth structure present in the exponential parameters to derive a 3D

annihilation relation in the Fourier domain. This relation translates into a product of

a low rank Toeplitz structured matrix and a vector of filter coefficients. We exploit this

low rank property to recover the images from undersampled measurements. We pose

the recovery as a structured low rank optimization problem. To solve the problem, we

employ an iterative re-weighted least squares (IRLS) based algorithm which enables

us to exploit the convolution structure present in the Toeplitz matrix. We also present

novel approximations to solve the problem efficiently for different applications.

First we demonstrate the algorithm on the problem of MR parameter mapping.

The direct implementation of the above algorithm results in a memory intensive and

computationally expensive algorithm. We address these issues by introducing novel

approximations in the Fourier domain, which enable us to solve the sub-problems

efficiently using fast Fourier transforms (FFTs). We show that the proposed algorithm

provides improved reconstructions and maps compared to those obtained from the

competing methods. Most of these methods exploit the signal structures such as

sparsity, smoothness, low rankness or linear predictability of the exponential signals

to recover the images. The proposed work can be thought of as a strategy that unifies

the aforementioned methods. Specifically, the proposed prior qualitatively combines

all of the above mentioned priors into one single prior.

Next we introduce a structured low rank algorithm for the calibration-free com-

pensation of field inhomogeneity artifacts in EPI data. For this purpose, we combined
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information from two EPI acquisitions and reformulated the artifact correction prob-

lem into a recovery of time series of images from undersampled measurements. This

reformulation allowed us to exploit the smooth structure of the exponential 3D dataset

to derive a low rank structured matrix prior in the Fourier domain. We enforced the

low rankness of the matrix as a prior to recover the time series of images. The reformu-

lation resulted in a unique pattern of measurements in every frame, which inspired

us to come up with a fast two step algorithm. In the first step, we proposed two

strategies to estimate the field map from the measured EPI data. This was followed

by estimating the distortion-free image, which was obtained as a solution of a least

squares problem. We validated the proposed method on phantom and human data

and showed that the artifacts were significantly reduced compared to the single shot

uncorrected EP image.

We extended the structured low rank method to correct inhomogeneity related ar-

tifacts on data acquired using a Rosette trajectory. The reformulation of the problem

as a time series recovery resulted in measurements following an incoherent undersam-

pling pattern between frames. This enabled us to solve the optimization problem using

a compressed sensing based iterative algorithm, similar to the one applied for MR

parameter mapping. We designed the rosette trajectory and acquired MR phantom

datasets. We applied the algorithm in the datasets and observed that the intensity

losses were significantly reduced.

Last, we developed a structured matrix recovery framework to accelerate cardiac

MRI. We modeled the breath-held cardiac data as a 3D piecewise constant function

and derived Fourier domain annihilation relations between the Fourier samples of the

gradient images and a vector of filter coefficients. We exploited these relations to

recover the series of images from undersampled measurements. We compared the

proposed method against conventional sparsity and smoothness based methods and

showed that the proposed reconstructions had fewer artifacts and errors. We note



www.manaraa.com

100

that even though the signal model is not exponential here, the algorithm developed

is very similar to the one applied to the parameter mapping case.

We have developed novel computationally efficient algorithms to solve important

problems in various MRI applications. They are capable of working with high di-

mensional datasets efficiently. Though we have demonstrated the algorithms in MRI

applications, they are general enough to be extended to imaging applications beyond

MRI.

6.2 Future directions

Application to MR Spectroscopy: The structured matrix recovery algorithm

developed in this thesis was demonstrated on the problem of MR parameter mapping.

This could be extended to the problem of denoising in MR spectroscopy (MRS). In

MRS, the goal is to estimate the spatial map of different metabolite concentrations

from a time series of images. The maps provide useful clinical information and act

as biomarkers for neurological disorders. However, the concentration of metabolites

is orders of magnitude lower than water resulting in very low SNR images. Thus

denoising the images is essential to obtaining accurate metabolite maps. Similar to

parameter mapping, the temporal profile at every pixel location follows an exponential

decay. This structure can be exploited along with the smoothness of the concentration

maps to derive a structured matrix prior. We can exploit the low rank property to

denoise the time series of images.

Dynamic field map compensation: In this work, we have developed a struc-

tured low rank algorithm and corrected field inhomogeneity artifacts in a single image.

However, in many dynamic applications such as fMRI, a single field map estimated in

the beginning of the scan cannot be used for correcting the artifacts in the entire im-

age series. This is because the field map could change due to subject motion, scanner

drift and respiration. Our algorithm developed for EPI acquisitions can be extended

to the dynamic case. In order to do this, the two EPI datasets can be acquired in an



www.manaraa.com

101

interleaved fashion. Specifically, the readout of datasets acquired at even time points

can be delayed from the datasets acquired at odd time points by a few ms. The field

map compensation can then be done using every pair of neighboring datasets using

our structured low rank algorithm.

Accelerating perfusion cardiac MRI: In this work, we have developed an al-

gorithm for accelerating breath-held cardiac MRI. For this application, we assumed a

piece-wise constant image model and derived annihilation relations accordingly. How-

ever for applications such as perfusion MRI, where there is contrast flow in addition

to cardiac motion, this model might not be accurate. Hence we could move towards

piece-wise linear or polynomial signal models for representation and derive appropri-

ate annihilation relations, resulting in a similar structured low rank matrix prior. We

can exploit the low rank structure to recover the perfusion images from undersampled

measurements. Since we consider a higher order model, the size of the Toeplitz ma-

trix would be very large. We can introduce Fourier domain approximations, similar

to the ones in this work, to reduce the computational complexity.
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